ORIGINAL RESEARCH

Study of the human brain potentials variability effects in P300 based brain–computer interface

About authors

Lomonosov Moscow State University, Moscow, Russia

Correspondence should be addressed: Ilya P. Ganin
Leninskie Gory, 1, str. 12, k. 246, Moscow, 119234, Russia; ur.liam@ninagpi

About paper

Funding: the study was funded by the Russian Science Foundation, project number 21-75-00021, https://rscf.ru/project/21-75-00021/

Author contribution: Ganin IP — research, data analysis and interpretation, literature analysis, preparation of the text; Kaplan AYa — data interpretation.

Compliance with ethical standards: the study was approved by Ethical Review Board at the Lomonosov Moscow State University (protocol number 2 of 11 October 2010) and carried out using EEG data (http://brain.bio.msu.ru/eeg_mov_matrix_BCI.htm) obtained by the authors and published earlier (https://doi.org/10.1016/j.neulet.2011.03.089).

Received: 2022-05-04 Accepted: 2022-05-29 Published online: 2022-06-21
|
  1. Abiri R, Borhani S, Sellers EW, Jiang Y, Zhao X. A comprehensive review of EEG-based brain-computer interface paradigms. J Neural Eng. 2019; 16 (1): 011001.
  2. Yang S, Li R, Li H, Xu K, Shi Y, Wang Q, et al. Exploring the Use of Brain-Computer Interfaces in Stroke Neurorehabilitation. Biomed Res Int. 2021: 9967348.
  3. Eldeeb S, Susam BT, Akcakaya M, Conner CM, White SW, Mazefsky CA. Trial by trial EEG based BCI for distress versus non distress classification in individuals with ASD. Sci Rep. 2021; 11 (1): 6000.
  4. Ganin IP, Kosichenko EA, Sokolov AV, Ioannisyanc OM, Arefev IM, Basova AYa, Kaplan AYa. Adaptation of the p300-based braincomputer interface for anorexia nervosa patients state evaluation. Bulletin of RSMU. 2019; 2: 32-38.
  5. Carelli L, Solca F, Faini A, Meriggi P, Sangalli D, Cipresso P, Riva G, Ticozzi N, Ciammola A, Silani V, Poletti B. Brain-Computer Interface for Clinical Purposes: Cognitive Assessment and Rehabilitation. Biomed Res Int. 2017; 2017: 1695290.
  6. Luck SJ. An introduction to the event related potential technique. MIT Press, Cambridge, MA, 2014.
  7. Farwell LA, Donchin E. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalography and Clinical Neurophysiology. 1988; 70: 510–23.
  8. Rezeika A, Benda M, Stawicki P, Gembler F, Saboor A, Volosyak I. Brain–Computer Interface Spellers: A Review. Brain Sciences. 2018; 8 (4): 57.
  9. Zang S, Zhou C, Chao F. Estimation of Event-Related Potentials from Single-Trial EEG. UK Workshop on Computational Intelligence. Springer, Cham. 2021; 1409: 415–27.
  10. Ouyang G, Hildebrandt A, Sommer W, Zhou C. Exploiting the intrasubject latency variability from single-trial event-related potentials in the P3 time range: A review and comparative evaluation of methods. Neurosci Biobehav Rev. 2017; 75: 1–21.
  11. Burwell SJ, Makeig S, Iacono WG, Malone SM. Reduced premovement positivity during the stimulus-response interval precedes errors: Using single-trial and regression ERPs to understand performance deficits in ADHD. Psychophysiology. 2019; 56 (9): e13392.
  12. Dowdall JR, Luczak A, Tata MS. Temporal variability of the N2pc during efficient and inefficient visual search. Neuropsychologia. 2012; 50 (10): 2442–53.
  13. Kutas M, McCarthy G and Donchin E. Augmenting mental chronometry: the P300 as a measure of stimulus evaluation time. Science. 1977; 197 (4305): 792–5.
  14. Zisk AH, Borgheai SB, McLinden J, Hosni SM, Deligani RJ, Shahriari Y. P300 latency jitter and its correlates in people with amyotrophic lateral sclerosis. Clinical Neurophysiology. 2021; 132 (2): 632–42.
  15. Kim JS, Lee YJ, Shim SH. What Event-Related Potential Tells Us about Brain Function: Child-Adolescent Psychiatric Perspectives. Soa Chongsonyon Chongsin Uihak. 2021; 32 (3): 93–98.
  16. Riggins T, Scott LS. P300 development from infancy to adolescence. Psychophysiology. 2020; 57 (7): e13346.
  17. Thompson DE, Warschausky S, Huggins JE. Classifier-based latency estimation: a novel way to estimate and predict BCI accuracy. Journal of neural engineering. 2013; 10 (1): 016006.
  18. Picton TW, Bentin S, Berg P, Donchin E, Hillyard SA, Johnson R, et al. Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria. Psychophysiology. 2000; 37 (2): 127–52.
  19. Dinstein I, Heeger DJ, Behrmann M. Neural variability: friend or foe? Trends Cogn Sci. 2015; 19 (6): 322–28.
  20. Kovarski K, Malvy J, Khanna RK, Arsène S, Batty M, Latinus M. Reduced visual evoked potential amplitude in autism spectrum disorder, a variability effect? Translational Psychiatry. 2019; 9 (1): 1–9.
  21. Gonen-Yaacovi G, Arazi A, Shahar N, Karmo A, Haar S, Meiran N, et al. Increased ongoing neural variability in ADHD. Cortex. 2016; 81: 50–63.
  22. Zeba MZ, Friganović K, Palmović M, Išgum V, Cifrek M. Assessment of mental fatigue during examination period with P300 oddball paradigm. In 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), IEEE. 2019: 1479–84.
  23. McFarland DJ, Vaughan TM. BCI in practice. Progress in brain research. 2016; 228: 389–404.
  24. Ganin IP, Kim SA, Liburkina SP, Galkina NV, Luzhin AO, Majorova LA, et al. Nabor teksta pacientami s postinsul'tnoj afaziej v komplekse «NejroChat» na osnove texnologii interfejsov mozg-komp'yuter na volne P300. Zhurn. vyssh. nerv. deyat. 2020; 70 (4): 435–45. Russian.
  25. Shishkin SL, Ganin IP, Kaplan AY. Event-related potentials in a moving matrix modification of the P300 brain–computer interface paradigm. Neuroscience letters. 2011; 496 (2): 95–99.
  26. Aricò P, Aloise F, Schettini F, Salinari S, Mattia D, Cincotti F. Influence of P300 latency jitter on event related potentialbased brain–computer interface performance. Journal of neural engineering. 2014; 11 (3): 035008.
  27. Schütz AC, Delipetkos E, Braun DI, Kerzel D, Gegenfurtner KR. Temporal contrast sensitivity during smooth pursuit eye movements. Journal of Vision. 2007; 7 (13): 3–3.
  28. Zhang B, Stevenson SS, Cheng H, Laron M, Kumar G, Tong J, et al. Effects of fixation instability on multifocal VEP (mfVEP) responses in amblyopes. Journal of Vision. 2008; 8 (3): 16.
  29. Aloise F, Aricò P, Schettini F, Riccio A, Salinari S, Mattia D, et al. A covert attention P300-based brain–computer interface: Geospell. Ergonomics. 2012; 55 (5): 538–51.
  30. McCane LM, Sellers EW, McFarland DJ, Mak JN, Carmack CS, Zeitlin D, et al. Brain-computer interface (BCI) evaluation in people with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 2014; 15 (3–4): 207–15.