ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ

Роль кластерина в прогнозировании развития ранней и поздней преэклампсии в первом триместре беременности

Информация об авторах

Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени В. И. Кулакова, Москва, Россия

Для корреспонденции: Анжелика Владимировна Тимофеева
ул. Академика Опарина, д. 4, г. Москва, 117997, Россия; ur.4anirapo@aveefomit_v, moc.liamg@82aveefomitva

Информация о статье

Финансирование: работа выполнена при финансовой поддержке Российского научного фонда в рамках гранта № 22-15-00363 «Эпигенетические и биохимические аспекты патологии беременности при нарушениях инвазивных свойств трофобласта: от ранней диагностики к профилактике материнской и перинатальной заболеваемости» в соответствии с соглашением № 22-15-00363 между Российским научным фондом, руководителем проекта Тимофеевой А. В. и НМИЦ АГП им. В. И. Кулакова о предоставлении гранта на проведение фундаментальных научных исследований и поисковых научных исследований от 13.05.2022 г.

Вклад авторов: А. В. Тимофеева — планирование исследования, проведение количественной ПЦР в реальном времени, проведение Вестерн-блоттинга, написание и редактирование рукописи; И. С. Федоров — пробоподготовка, проведение Вестерн-блоттинга, статистическая обработка данных; А. М. Тарасова — пробоподготовка и проведение Вестерн-блоттинга; К. А. Горина — клиническая характеристика пациенток; Ю. В. Сухова — формирование групп пациенток для исследования, В. А. Гусар — анализ полученных данных; Т. Ю. Иванец — скрининг в 1-м триместре беременности.

Соблюдение этических стандартов: исследование одобрено этическим комитетом НМИЦ АГП им. В. И. Кулакова (протокол № 13 от 10 декабря 2020 г.), проведено в соответствии с требованиями Хельсинкской декларации 1964 г. ФЗ «Об основах охраны здоровья граждан в Российской Федерации» № 323ФЗ от 21 ноября 2011 г. Все пациентки подписали добровольное информированное согласие на участие в исследовании.

Статья получена: 23.11.2022 Статья принята к печати: 17.12.2022 Опубликовано online: 28.12.2022
|
  1. Burton GJ, Redman CW, Roberts JM, Moffett A. Pre-eclampsia: pathophysiology and clinical implications. BMJ. 2019; 366: l2381. DOI: 10.1136/bmj.l2381.
  2. Ananth CV, Lavery JA, Friedman AM, Wapner RJ, Wright JD. Serious maternal complications in relation to severe pre-eclampsia: a retrospective cohort study of the impact of hospital volume. BJOG. 2017; 124: 1246–53. DOI: 10.1111/1471-0528.14384.
  3. Brown MA, Magee LA, Kenny LC, Karumanchi SA, McCarthy FP, Saito S, et al. The hypertensive disorders of pregnancy: ISSHP classification, diagnosis & management recommendations for international practice. Pregnancy Hypertens. 2018; 13: 291–310. DOI: 10.1016/j.preghy.2018.05.004.
  4. Pierrat V, Marchand-Martin L, Arnaud C, Kaminski M, RescheRigon M, Lebeaux C, et al. Neurodevelopmental outcome at 2 years for preterm children born at 22 to 34 weeks’ gestation in France in 2011: EPIPAGE-2 cohort study. BMJ. 2017; 358: j3448. DOI: 10.1136/bmj.j3448.
  5. Van Beek PE, Rijken M, Broeders L, Ter Horst HJ, KoopmanEsseboom C, de Kort E, et al. Two-year neurodevelopmental outcome in children born extremely preterm: the EPI-DAF study. Arch Dis Child Fetal Neonatal Ed. 2022; 107: 467–74. DOI: 10.1136/archdischild-2021-323124.
  6. Huppertz B. Placental origins of preeclampsia: challenging the current hypothesis. Hypertens. (Dallas, Tex. 1979). 2008; 51: 970–75. DOI: 10.1161/HYPERTENSIONAHA.107.107607.
  7. Garrido-Gomez T, Dominguez F, Quiñonero A, Diaz-Gimeno P, Kapidzic M, Gormley M, et al. Defective decidualization during and after severe preeclampsia reveals a possible maternal contribution to the etiology. Proc Natl Acad Sci USA. 2017; 114: E8468–E8477. DOI: 10.1073/pnas.1706546114.
  8. Ruane PT, Berneau SC, Koeck R, Watts J, Kimber SJ, Brison DR, et al. Apposition to endometrial epithelial cells activates mouse blastocysts for implantation. Mol Hum Reprod. 2017; 23: 617– 27. DOI: 10.1093/molehr/gax043.
  9. Myatt L. Review: Reactive oxygen and nitrogen species and functional adaptation of the placenta. Placenta. 2010; 31 Suppl: S66–9. DOI: 10.1016/j.placenta.2009.12.021.
  10. Pijnenborg R, Bland JM, Robertson WB, Brosens I. Uteroplacental arterial changes related to interstitial trophoblast migration in early human pregnancy. Placenta. 1983; 4: 397–413. DOI: 10.1016/ s0143-4004(83)80043-5.
  11. Burton GJ, Woods AW, Jauniaux E, Kingdom JCP. Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta. 2009; 30: 473–82. DOI: 10.1016/j.placenta.2009.02.009.
  12. James JL, Saghian R, Perwick R, Clark AR. Trophoblast plugs: impact on utero-placental haemodynamics and spiral artery remodelling. Hum Reprod. 2018; 33: 1430–41. DOI: 10.1093/ humrep/dey225.
  13. Allerkamp HH, Clark AR, Lee TC, Morgan TK, Burton GJ, James JL. Something old, something new: digital quantification of uterine vascular remodelling and trophoblast plugging in historical collections provides new insight into adaptation of the uteroplacental circulation. Hum Reprod. 2021; 36: 571–86. DOI: 10.1093/humrep/deaa303.
  14. Staff AC, Fjeldstad HE, Fosheim IK, Moe K, Turowski G, Johnsen GM, et al. Failure of physiological transformation and spiral artery atherosis: their roles in preeclampsia. Am J Obstet Gynecol. 2022; 226: S895–S906. DOI: 10.1016/j.ajog.2020.09.026.
  15. Sidorova IS. Solved and unsolved problems of preeclampsia in Russia (Editorial). Russ Bull Obstet. 2015; 15: 4–9. DOI: 10.17116/rosakush20151524-9.
  16. Rana S, Burke SD, Karumanchi SA. Imbalances in circulating angiogenic factors in the pathophysiology of preeclampsia and related disorders. Am J Obstet Gynecol. 2022; 226: S1019– S1034. DOI: 10.1016/j.ajog.2020.10.022.
  17. Haram K, Mortensen JH, Myking O, Magann EF, Morrison JC. The role of oxidative stress, adhesion molecules and antioxidants in preeclampsia. Curr Hypertens Rev. 2019; 15: 105–12. DOI: 10. 2174/1573402115666190119163942.
  18. Tomimatsu T, Mimura K, Matsuzaki S, Endo M, Kumasawa K, Kimura T. Preeclampsia: maternal systemic vascular disorder caused by generalized endothelial dysfunction due to placental antiangiogenic factors. Int J Mol Sci. 2019; 20. DOI: 10.3390/ ijms20174246.
  19. Staff AC. The two-stage placental model of preeclampsia: An update. J Reprod Immunol. 2019; 134–135: 1–10. DOI: 10.1016/j.jri.2019.07.004.
  20. Than NG, Romero R, Tarca AL, Kekesi KA, Xu Y, Xu Z, et al. Integrated systems biology approach identifies novel maternal and placental pathways of preeclampsia. Front Immunol. 2018; 9: 1661. DOI: 10.3389/fimmu.2018.01661.
  21. Castro KR, Prado KM. Lorenzon AR, Hoshida MS, Alves EA, Francisco RP, et al. Serum from preeclamptic women triggers endoplasmic reticulum stress pathway and expression of angiogenic factors in trophoblast cells. Front Physiol. 2021; 12: 799653. DOI: 10.3389/fphys.2021.799653.
  22. Yung HW, Atkinson D, Campion-Smith T, Olovsson M, CharnockJones DS, Burton GJ. Differential activation of placental unfolded protein response pathways implies heterogeneity in causation of early- and late-onset pre-eclampsia. J Pathol. 2014; 234: 262– 76. DOI: 10.1002/path.4394.
  23. Burton GJ, Yung H-W. Endoplasmic reticulum stress in the pathogenesis of early-onset pre-eclampsia. Pregnancy Hypertens. 2011; 1: 72–78. DOI: 10.1016/j.preghy.2010.12.002.
  24. Timofeeva AV, Fedorov IS, Pirogova MM, Vasilchenko ON, Chagovets VV, Ezhova LS, et al. Clusterin and its potential regulatory microRNAs as a part of secretome for the diagnosis of bnormally invasive placenta: Accreta, Increta, and Percreta Cases. Life (Basel, Switzerland). 2021; 11. DOI: 10.3390/life11040270.
  25. Janiszewska E, Kmieciak A, Kacperczyk M, Witkowska A, Kratz EM. The influence of clusterin glycosylation variability on selected pathophysiological processes in the human body. Oxid Med Cell Longev. 2022; 2022: 7657876. DOI: 10.1155/2022/7657876.
  26. Zoubeidi A, Gleave M. Small heat shock proteins in cancer therapy and prognosis. Int J Biochem Cell Biol. 2012; 44: 1646–56. DOI: 10.1016/j.biocel.2012.04.010.
  27. Zeng S, Pan Y, Liu F, Yin J, Jiang M, Long Y, et al. Role of clusterin in the regulation of trophoblast development and preeclampsia. Biochem Biophys Res Commun. 2021; 583: 128–34. DOI: 10.1016/j.bbrc.2021.10.064.
  28. Satapathy S, Wilson MR. The dual roles of clusterin in extracellular and intracellular proteostasis. Trends Biochem Sci. 2021; DOI: https://doi.org/10.1016/j.tibs.2021.01.005.
  29. Zeng S, Han M, Jiang M, Liu F, Hu Y, Long Y, et al. Serum complement proteomics reveal biomarkers for hypertension disorder of pregnancy and the potential role of Clusterin. Reprod Biol Endocrinol. 2021; 19: 56. DOI: 10.1186/s12958-021-00742-z.
  30. Watanabe H, Hamada H, Yamada N, Sohda S, Yamakawa-Kobayashi K, Yoshikawa H,et al. Proteome analysis reveals elevated serum levels of clusterin in patients with preeclampsia. Proteomics. 2004; 4: 537–43. DOI: 10.1002/pmic.200300565.
  31. Oztas E, Ozler S, Ersoy AO, Iskender CT, Sucak A, Ergin M, et al. Increased levels of serum clusterin is associated with intrauterine growth restriction and adverse pregnancy outcomes in preeclampsia. J Perinat Med. 2016; 44: 269–75. DOI: 10.1515/ jpm-2015-0120.
  32. Trougakos IP. The molecular chaperone apolipoprotein J/clusterin as a sensor of oxidative stress: implications in therapeutic approaches — a mini-review. Gerontology. 2013; 59: 514–23. DOI: 10.1159/000351207.
  33. Shiota M, Zoubeidi A, Kumano M, Beraldi E, Naito S, Nelson CC, et al. Clusterin is a critical downstream mediator of stress-induced YB-1 transactivation in prostate cancer. Mol Cancer Res. 2011; 9: 1755–66. DOI: 10.1158/1541-7786.MCR-11-0379.
  34. Criswell T, Klokov D, Beman M, Lavik JP, Boothman DA. Repression of IR-inducible clusterin expression by the p53 tumor suppressor protein. Cancer Biol Ther. 2003; 2: 372–80. DOI: 10.4161/cbt.2.4.430.
  35. Cervellera M, Raschella G, Santilli G, Tanno B, Ventura A, Mancini C, et al. Direct transactivation of the anti-apoptotic gene apolipoprotein J (clusterin) by B-MYB. J Biol Chem. 2000; 275: 21055–60. DOI: 10.1074/jbc.M002055200.
  36. Santilli G, Aronow BJ, Sala A. Essential requirement of apolipoprotein J (clusterin) signaling for IkappaB expression and regulation of NF-kappaB activity. J Biol Chem. 2003; 278: 38214– 9. DOI: 10.1074/jbc.C300252200.
  37. Garg M. Targeting microRNAs in epithelial-to-mesenchymal transition-induced cancer stem cells: therapeutic approaches in cancer. Expert Opin Ther Targets. 2015; 19: 285–97. DOI: 10.1517/14728222.2014.975794.
  38. Nizard P, Tetley S, Le Dréan Y, Watrin T, Le Goff P, Wilson MR, et al. Stress-induced retrotranslocation of clusterin/ApoJ into the cytosol. Traffic. 2007; 8: 554–65. DOI: 10.1111/j.16000854.2007.00549.x.
  39. Wilson MR. Zoubeidi A. Clusterin as a therapeutic target. Expert Opin Ther Targets. 2017; 21: 201–13. DOI: 10.1080/14728222.2017.1267142.
  40. Rohne P, Prochnow H, Wolf S, Renner B, Koch-Brandt C. The chaperone activity of clusterin is dependent on glycosylation and redox environment. Cell Physiol Biochem Int J. Exp Cell Physiol Biochem Pharmacol. 2014; 34: 1626–39. DOI: 10.1159/000366365.
  41. Chen Y, Huang Y, Jiang R, Teng Y. Syncytiotrophoblast-derived microparticle shedding in early-onset and late-onset severe preeclampsia. Int J. Gynaecol Obstet Off Organ Int Fed Gynaecol Obstet. 2012; 119: 234–38. DOI: 10.1016/j.ijgo.2012.07.010.
  42. Pillay P, Maharaj N, Moodley J, Mackraj I. Placental exosomes and pre-eclampsia: Maternal circulating levels in normal pregnancies and, early and late onset pre-eclamptic pregnancies. Placenta. 2016; 46: 18–25. DOI: 10.1016/j.placenta.2016.08.078.