ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ
Однодоменное антитело для связывания консервативного эпитопа рецептор-связывающего домена белка Spike коронавируса SARS-CoV-2
1 Институт молекулярной биологии имени В. А. Энгельгардта Российской академии наук, Москва, Россия
2 Институт биологии гена Российской академии наук, Москва, Россия
Для корреспонденции: Сергей Владимирович Тиллиб
ул. Вавилова, д. 34/5, г. Москва, 119334, Россия; ur.ygoloibeneg@billit moc.liamg@billit.iegres
Финансирование: работа была поддержана Министерством науки и высшего образования Российской Федерации (договор № 075-15-20211086, контракт № RF––193021X0015).
Благодарности: М. В. Рутовской из института Проблем экологии и эволюции им. А. Н. Северцова РАН за помощь в работе по иммунизации верблюда.
Вклад авторов: П. О. Воробьев — проведение молекулярного клонирования и последующей наработки рекомбинантных белков (антигенов для иммунизации); С. В. Тиллиб — разработка общей идеи и реализация этапов иммунизации, способа получения и первичного анализа полученных однодоменных антител, написание статьи.
Соблюдение этических стандартов: исследование одобрено этическим комитетом Института проблем экологии и эволюции им. А. Н. Северцова РАН (протокол № 17 от 11 февраля 2018 г.); работы с животными проводили в строгом соответствии с рекомендациями Национального стандарта Российской Федерации ГОСТ Р 53434–2009.
- Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020; 181 (2): 271–80.
- Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020; 181 (2): 281–92.
- Zhou T, Tsybovsky Y, Gorman J, Rapp M, Cerutti G, Chuang G-Y, et al. CryoEM Structures of SARS-CoV-2 Spike Without and With ACE2 Reveal a pH Dependent Switch to Mediate Endosomal Positioning of Receptor-Binding Domains. Cell Host Microbe. 2020; 28 (6): 867–79.e5.
- Dhawan M, Sharma A, Priyanka S, Thakur N, Rajkhowa TK, Choudhary OP. Delta variant (B.1.617.2) of SARS-CoV-2: Mutations, impact, challenges and possible solutions. Hum Vaccin Immunother. 2022; 18 (5): 2068883.
- Mannar D, Saville JW, Zhu X, Srivastava SS, Berezuk AM, Tuttle KS, et al. SARS-CoV-2 Omicron Variant: Antibody Evasion and CryoEM Structure of Spike Protein-ACE2 Complex. Science. 2022; 375 (6582): eabn7760.
- Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC, Harrison EM, et al. SARS-CoV-2 Variants, Spike Mutations and Immune Escape. Nat Rev Microbiol. 2021; 19 (7): 409–21.
- Starr TN, Greaney AJ, Dingens AS, Bloom JD. Complete Map of SARS-CoV-2 RBD Mutations That Escape the Monoclonal Antibody LY-CoV555 and its Cocktail With LY-Cov016. Cell Rep. Med. 2021; 2 (4): 100255.
- Rees-Spear C, Muir L, Griffith SA, Heaney J, Aldon Y, Snitselaar JL, et al. The Effect of Spike Mutations on SARS-CoV-2 Neutralization. Cell Rep. 2021; 34 (12): 108890.
- Parray HA, Shukla S, Perween R, Khatri R, Shrivastava T, Singh V, et al. Inhalation monoclonal antibody therapy: a new way to treat and manage respiratory infections. Appl Microbiol Biotechnol. 2021; 105 (16–17): 6315–32.
- Wang YY, Harit D, Subramani DB, Arora H, Kumar PA, Lai SK, et al. Influenza-binding antibodies immobilise influenza viruses in fresh human airway mucus. Eur Respir J. 2017; 49: 1601709.
- Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hammers C, Bajyana Songa E, et al. Naturally occurring antibodies devoid of light chains. Nature. 1993; 363: 446–8.
- Flajnik MF, Kasahara M. Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat Rev Genet. 2010; 11: 47–59.
- Harmsen MM, De Haard HJ. Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol. 2007; 77: 13–22.
- Muyldermans S. Nanobodies: natural single-domain antibodies. Annu Rev Biochem. 2013; 82: 775–97.
- Laursen NS, Friesen RHE, Zhu X, Jongeneelen M, Blokland S, Vermond J, et al. Universal protection against influenza infection by a multidomain antibody to influenza hemagglutinin. Science. 2018; 362 (6414): 598–602.
- Güttler T, Aksu M, Dickmanns A, Stegmann KM, Gregor K, Rees R, et al. Neutralization of SARS-CoV-2 by highly potent, hyperthermostable, and mutationtolerant nanobodies. The EMBO Journal. 2021; 40: e107985. DOI: 10.15252/embj.2021107985.
- Casasnovas JM, Margolles Y, Noriega MA, Guzma´n M, Arranz R, Melero R, et al. Nanobodies protecting from lethal SARS-CoV-2 infection target receptor binding epitopes preserved in virus variants other than omicron. Front Immunol. 2022; 13: 863831.
- Schoof M, Faust B, Saunders RA, Sangwan S, Rezelj V, Hoppe N, et al. An ultrapotent synthetic nanobody neutralizes SARSCoV-2 by stabilizing inactive Spike. Science. 2020; 370 (6523): 1473–9.
- Krammer F, F Amanat F, Strohmeier S. Vector pCAGGS Containing the SARS-Related Coronavirus 2, Wuhan-Hu-1 Spike Glycoprotein Receptor Binding Domain (RBD), NR52309. Available from: https://www.beiresources.org/Catalog/BEIPlasmidVectors/NR-52309.aspx.
- Stadlbauer D, Amanat F, Chromikova V, Jiang K, Strohmeier S, Arunkumar GA, et al. SARS-CoV-2 Seroconversion in Humans: a detailed protocol for a serological assay, antigen production, and test setup. Curr Protoc Microbiol. 2020; 57 (1): e100.
- Тиллиб С. В., Иванова Т. И., Васильев Л. А. Фингерпринтный анализ селекции «нанотел» методом фагового дисплея с использованием двух вариантов фагов-помощников. Acta Naturae. 2010; 2 (3): 100–8.
- Arbabi Ghahroudi M, Desmyter A, Wyns L, Hamers R, Muyldermans S. Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett. 1997; 414 (3): 521–6. DOI: 10.1016/s0014-5793(97)010624. PMID: 9323027.
- Tillib S, Ivanova TI, Vasilev LA, Rutovskaya MV, Saakyan SA, Gribova IY, et al. Formatted single-domain antibodies can protect mice against infection with influenza virus (H5N2). Antiviral Research. 2013; 97: 245–54.