ORIGINAL RESEARCH

Morphological peculiarities of regeneration of oral mucosa associated with use of polymeric piezoelectric membranes

Koniaeva AD1, Varakuta EYu1, Leiman AE1, Rafiev DO1, Bolbasov EN2, Stankevich KS3
About authors

1 Siberian State Medical University, Tomsk, Russia

2 National Research Tomsk Polytechnic University, Tomsk, Russia

3 Montana State University, Bozeman, MT, USA

Correspondence should be addressed: Anastasiia D. Koniaeva
Moskovsky Trakt, 2, Tomsk, 634034, Russia; moc.liamg@59aynokaysa

About paper

Funding: the study was supported by the Russian Foundation for Basic Research under research project №23-25-00346.

Author contribution: Koniaeva AD, Varakuta EYu, Bolbasov EN, Stankevich KS — study concept and design; Koniaeva AD, Leiman AE — collection and processing of the material; Koniaeva AD, Varakuta EYu, Rafiev DO — text authoring; Koniaeva AD, Varakuta EYu, Rafiev DO, Bolbasov EN, and Stankevich KS — text editing.

Compliance with ethical standards: the study was approved by the Ethics Committee of the Siberian State Medical University (Minutes № 7693/1 of August 26, 2019). All manipulations with the animals were done as prescribed by the Directive 2010/63/EU of the European Parliament of September 22, 2010 "On the protection of animals used for scientific purposes", and the Declaration of Helsinki.

Received: 2023-05-18 Accepted: 2023-06-02 Published online: 2023-06-20
|

Wound defects of the oral mucosa are a common pathology the treatment of which often involves synthetic membranes. Development of varieties of such membranes is an ongoing process. This study aimed to register morphological features of the oral mucosa regeneration process in the presence of one of the varieties, the polymer piezoelectric membranes. The study involved 45 Wistar rats divided into 3 groups: 1) animals with an open wound defect; 2) animals with a wound defect covered with a copper-coated polymer membrane; 3) intact animals. The samples for morphometric study were collected on the 3rd, 7th and 12th days. On the 3rd day, rats of group 1 had the specific area of granulation tissue 1.4 times greater than that in group 2 (p = 0.033). In group 1 rats, endotheliocytes expressed more VEGF than in the animals of group 2. In group 2, the defect was ultimately completely covered with the epithelial layer, which was not the case in group 1. On the 7th day, the epithelium in rats of group 2 was twice as thick as the layer registered in group 1 (p = 0.019). Granulation tissue was replaced by loose fibrous connective tissue. In group 1, the specific area of inflammatory infiltration was greater than that of loose fibrous connective tissue, and the VEGF expression level was lower than in group 2. On the 12th day, the predominant tissue in group 2 was the loose fibrous connective tissue, the VEGF expression level equaled that of group 3, and peripheral nerves began to grow. In group 1, the specific area of dense fibrous tissue was 3.9 times greater than that in group 2 (p = 0.012), the epithelium had pathological changes and the VEGF expression was below control values. Thus, a polymer piezoelectric membrane had a positive effect on the post-wound restoration of the oral mucosa tissues.

Keywords: inflammation, regeneration, oral mucosa, wound defect, scaffolds, piezoelectrics

КОММЕНТАРИИ (0)