ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ

Терапия рассеянного склероза препаратами первой линии: уровень цитокинов и влияние герпетической инфекции

Информация об авторах

1 Ярославский государственный медицинский университет, Ярославль, Россия

2 Российский национальный исследовательский медицинский университет имени Н. И. Пирогова, Москва, Россия

Для корреспонденции: Наталия Сергеевна Баранова
ул. Революционная, д. 5, г. Ярославль, 150000, Россия; ur.liam@sn_avonarab

Информация о статье

Финансирование: работа выполнена при финансовой поддержке Федерального государственного бюджетного учреждения «Фонд содействия развитию малых форм предприятий в научно-технической сфере» (Фонд содействия инновациям) в рамках программы УМНИК: Участник молодежного научно-инновационного конкурса (договоры №3560ГУ1/2014 от 23.09.2014, № 8815ГУ2/2015 от 17.12.2015).

Вклад авторов: Н. С. Баранова, М. C. Грись — планирование и дизайн исследования; М. C. Грись, А. С. Артюхов — сбор данных и проведение исследования; Н. С. Баранова, М. C. Грись, А. А. Баранов — анализ данных; все авторы — интерпретация данных; Н. С. Баранова, М. C. Грись — подготовка черновика рукописи; все авторы — редактирование рукописи.

Соблюдение этических стандартов: исследование одобрено локальным этическим комитетом ФГБОУ ВО ЯГМУ Минздрава РФ (протокол № 1 от «10» октября 2013 г.). Все пациенты подписали добровольное информированное согласие.

Статья получена: 23.04.2024 Статья принята к печати: 05.05.2024 Опубликовано online: 19.06.2024
|
  1. Бойко А. Н., Гусев Е. И. Современные алгоритмы диагностики и лечения рассеянного склероза, основанные на индивидуальной оценке состояния пациента. Журнал неврологии и психиатрии им. С. С. Корсакова. Спецвыпуски. 2017; 117 (2–2): 92–106. DOI: 10.17116/jnevro20171172292-106.
  2. Wynn DR. Enduring clinical value of copaxone® (glatiramer acetate) in multiple sclerosis after 20 years of use. Mult Scler Int. 2019; 2019: 7151685. DOI: 10.1155/2019/7151685.
  3. Cohan SL, Hendin BA, Reder AT, Smoot K, Avila R, Mendoza JP, et al. Interferons and multiple sclerosis: lessons from 25 years of clinical and real-world experience with intramuscular interferon beta-1a (Avonex). CNS Drugs. 2021; 35 (7): 743–767. DOI: 10.1007/s40263-021-00822-z.
  4. Melendez-Torres GJ, Armoiry X, Court R, Patterson J, Kan A, Auguste P, et al. Comparative effectiveness of beta-interferons and glatiramer acetate for relapsing-remitting multiple sclerosis: systematic review and network meta-analysis of trials including recommended dosages. BMC Neurol. 2018; 18 (1): 162. DOI: 10.1186/s12883-018-1162-9.
  5. Zettl UK, Rommer PS, Aktas O, Wagner T, Richter J, Oschmann P, et al. Interferon beta-1a sc at 25 years: a mainstay in the treatment of multiple sclerosis over the period of one generation. Expert Rev Clin Immunol. 2023; 19 (11): 1343–1359. DOI: 10.1080/1744666X.2023.2248391.
  6. D'Angelo C, Reale M, Costantini E, Di Nicola M, Porfilio I, de Andrés C, et al. Profiling of canonical and non-traditional cytokine levels in interferon-β-treated relapsing-remitting multiple sclerosis patients. Front Immunol. 2018, 9: 1240; DOI: 10.3389/fimmu.2018.01240.
  7. Rommer PS, Milo R, Han MH, Satyanarayan S, Sellner J, Hauer L, et al. Immunological aspects of approved MS therapeutics. Front Immunol. 2019; 11; 10: 1564. DOI: 10.3389/fimmu.2019.01564.
  8. Ganji A, Monfared ME, Shapoori S, Nourbakhsh P, Ghazavi A, Ghasami K, et al. Effects of interferon and glatiramer acetate on cytokine patterns in multiple sclerosis patients. Cytokine. 2020; 126: 154911. DOI: 10.1016/j.cyto.2019.154911.
  9. Trenova AG, Slavov GS, Manova MG, Kostadinova II. Cytokines and disability in interferon-β-1b treated and untreated women with multiple sclerosis. Arch Med Res. 2014; 45 (6): 495–500. DOI: 10.1016/j.arcmed.2014.08.001.
  10. Sosvorova L, Kanceva R, Vcelak J, Kancheva L, Mohapl M, Starka L, et al. The comparison of selected cerebrospinal fluid and serum cytokine levels in patients with multiple sclerosis and normal pressure hydrocephalus. Neuro Endocrinol Lett. 2015; 36 (6): 564–71.
  11. Barcuţean LI, Romaniuc A, Maier S, Bajko Z, Motataianu A, Adina H, et al. Clinical and serological biomarkers of treatment’s response in multiple sclerosis patients treated continuously with interferonβ-1b for more than a decade. CNS Neurol. Disord. Drug Targets. 2018; 17: 780–92. DOI: 10.2174/1871527317666180917095256.
  12. Maier S, Motataianu A, Barcutean L, Balint A, Hutanu A, Zoltan B, et al. A interferon-β 1a, an immunomodulatory in relapsing remitting multiple sclerosis patients. The effect on pro-inflammatory cytokines. Farmacia. 2020; 68 (1): 65–75. DOI: 10.31925/farmacia.2020.1.10.
  13. Melamud MM, Ermakov EA, Boiko AS, Kamaeva DA, Sizikov AE, Ivanova SA, et al. Multiplex analysis of serum cytokine profiles in systemic lupus erythematosus and multiple sclerosis. Int J Mol Sci. 2022; 23: 13829. DOI: 10.3390/ijms232213829
  14. de J Guerrero-García J, Rojas-Mayorquín AE, Valle Y, PadillaGutiérrez JR, Castañeda-Moreno VA, Mireles-Ramírez MA, et al. Decreased serum levels of sCD40L and IL-31 correlate in treated patients with Relapsing-Remitting Multiple Sclerosis. Immunobiology. 2018; 223: 135–41. DOI: 10.1016/j.imbio.2017.10.001.
  15. Christophi GP, Gruber RC, Panos M, Christophi RL, Jubelt B, Massa PT. Interleukin-33 upregulation in peripheral leukocytes and CNS of multiple sclerosis patients. Clin Immunol. 2012; 142 (3): 308–19. DOI: 10.1016/j.clim.2011.11.007.
  16. Jafarzadeh A, Mahdavi R, Jamali M, Hajghani H, Nemati M, Ebrahimi HA. Increased concentrations of Interleukin-33 in the serum and cerebrospinal fluid of patients with multiple sclerosis. Oman Med J. 2016; 31(1): 40–45. DOI: 10.5001/omj.2016.08.
  17. Alsahebfosoul F, Rahimmanesh I, Shajarian M, Etemadifar M, Sedaghat N, Hejazi Z, et al. Interleukin-33 plasma levels in patients with relapsing-remitting multiple sclerosis. BioMol Concepts. 2017; 8 (1): 55–60. DOI: 10.1515/bmc-2016-0026.
  18. Donati D. Viral infections and multiple sclerosis. Drug Discov Today Dis Models. 2020; 32: 27–33. DOI: 10.1016/j.ddmod.2020.02.003.
  19. Bjornevik K, Münz C, Cohen JI, Ascherio A. Epstein-Barr virus as a leading cause of multiple sclerosis: mechanisms and implications. Nat Rev Neurol. 2023; 19 (3): 160–71. DOI: 10.1038/s41582-023-00775-5.
  20. Баранова Н. С., Грись М. С., Баранов А. А., Спирин Н. Н., Артюхов А. С., Шакирова К. М. и др. Клиническое значение определения цитокинов у пациентов с рассеянным склерозом и взаимосвязь с герпетической инфекцией. Вестник РГМУ. 2023; (4): 51–65. DOI: 10.24075/vrgmu.2023.032.
  21. Якушина Т. И., Лиждвой В. Ю., Василенко И. А., Андрюхина О. М., Котов С. В. Дополнительные показатели для оценки эффективности терапии рассеянного склероза (предварительные данные). Журнал неврологии и психиатрии им. С. С. Корсакова. Спецвыпуски. 2013; 113 (2–2): 61–65.
  22. Оспельникова Т. П., Морозова О. В., Исаева Е. И., Лиждвой В. Ю., Колодяжная Л. В., Андреева С. А. и др. Мониторинг цитокинов у больных рассеянным склерозом в процессе лечения препаратом IFNβ-1a. Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2015; 115 (8–2): 71–71.
  23. Сурсякова Н. В., Куклина Е. М., Байдина Т. В., Некрасова И. В., Трушникова Т. Н. Вклад В-лимфоцитов в продукцию интерлейкина 17 при рассеянном склерозе. Неврология, нейропсихиатрия, психосоматика. 2023; 15 (Прил. 1): 15–21. DOI: 10.14412/2074-2711-2023-1S-15-21.
  24. Masilionyte U, Gedvilaite G, Kaikaryte K, Vilkeviciute A, Kriauciuniene L, Glebauskiene B, et al. IL-10 Gene Polymorphisms and IL-10 Serum Levels in Patients with Multiple Sclerosis in Lithuania. Brain Sci. 2022; 12 (6): 800. DOI: 10.3390/brainsci12060800.
  25. Cevikbas F, Wang X, Akiyama T, Kempkes C, Savinko T, Antal A, et al. A sensory neuron-expressed IL-31 receptor mediates T helper celldependent itch: Involvement of TRPV1 and TRPA1. J Allergy Clin Immunol. 2014; 133: 448–60. DOI: 10.1016/j.jaci.2013.10.048.
  26. Feng X, Bao R, Li L, Deisenhammer F, Arnason BGW, Reder AT. Interferon-β corrects massive gene dysregulation in multiple sclerosis: Short-term and long-term effects on immune regulation and neuroprotection. EBioMedicine. 2019; 49: 269–283. DOI: 10.1016/j.ebiom.2019.09.059.
  27. Kwilasz AJ, Grace PM, Serbedzija P, Maier SF, Watkins LR. The therapeutic potential of interleukin-10 in neuroimmune diseases. Neuropharmacology. 2015; 96: 55–69. DOI: 10.1016/j.neuropharm.2014.10.020.
  28. Machado-Santos J, Saji E, Troscher AR, Paunovic M, Liblau R, Gabriely G, et al. The compartmentalized inflammatory response in the multiple sclerosis brain is composed of tissue-resident CD8+ T lymphocytes and B cells. Brain. 2018; 141 (7): 2066– 2082. DOI: 10.1093/brain/awy151.
  29. Rojas JM, Avia M, Martín V, Sevilla N. IL-10: A Multifunctional Cytokine in Viral Infections. J Immunol Res. 2017; 2017: 6104054. DOI: 10.1155/2017/6104054.
  30. Schönrich G, Abdelaziz MO, Raftery MJ. Epstein-Barr virus, interleukin-10 and multiple sclerosis: A me´ nage à trois. Front. Immunol. 2022; 13: 1028972. DOI: 10.3389/fimmu.2022.1028972.
  31. Miller A, Shapiro S, Gershtein R, Kinarty A, Rawashdeh H, Honigman S, et al. Treatment of multiple sclerosis with copolymer-1 (Copaxone): implicating mechanisms of Th1 to Th2/Th3 immune deviation. J Neuroimmunol. 1998; 92: 113–21. DOI: 10.1016/s0165-5728(98)00191-x.
  32. Rudick RA, Ransohoff RM, Lee JC, Peppler R, Yu M, Mathisen PM, et al. In vivo effects of interferon beta-1a on immunosuppressive cytokines in multiple sclerosis. Neurology. 1998; 50 (5): 1294– 300. DOI: 10.1212/wnl.50.5.1294.
  33. Zhang L, Yuan S, Cheng G, Guo B. Type I IFN promotes IL-10 production from T cells to suppress Th17 cells and Th17-associated autoimmune inflammation. PLoS One. 2011; 6 (12): 1–11. DOI: 10.1371/journal.pone.0028432.
  34. Rizzo F, Giacomini E, Mechelli R, Buscarinu MC, Salvetti M, Severa M, et al. Interferon-β therapy specifically reduces pathogenic memory B cells in multiple sclerosis patients by inducing a FAS-mediated apoptosis. Immunol Cell Biol. 2016; 94 (9): 886–894. DOI: 10.1038/icb.2016.55.
  35. Attfield KE, Jensen LT, Kaufmann M, Friese MA, Fugger L. The immunology of multiple sclerosis. Nat Rev Immunol. 2022, 22: 734–50. DOI: 10.1038/s41577-022-00718-z.
  36. Dinarello CA, Bernheim HA, Duff GW, Le HV, Nagabhushan TL, Hamilton NC, et al. Mechanisms of fever induced by recombinant human interferon. J Clin Invest. 1984; 74 (3): 906–13. DOI: 10.1172/JCI111508.
  37. Langer-Gould A, Moses HH, Murray TJ. Strategies for managing the side effects of treatments for multiple sclerosis. Neurology. 2004; 63 (11): S35–41. DOI: 10.1212/wnl.63.11_suppl_5.s35.
  38. Грись М. С., Баранова Н. С., Спирин Н. Н., Касаткин Д. С., Киселев Д. В., Шипова Е. Г. Рассеянный склероз у пациентов с герпесвирусной инфекцией: особенности клинической картины и течения. Неврология, нейропсихиатрия, психосоматика. 2021; 13 (Прил. 1): 21–26. DOI: 10.14412/2074-2711-2021-1S-21-26.
  39. Su C, Zhan G, Zheng C. Evasion of host antiviral innate immunity by HSV1, an update. Virol J. 2016; 13: 38. DOI: 10.1186/s12985-016-0495-5.
  40. Danastas K, Miranda-Saksena M, Cunningham AL. Herpes simplex virus type 1 interactions with the interferon system. Int J Mol Sci. 2020; 21 (14): 5150. DOI: 10.3390/ijms21145150.
  41. Verzosa AL, McGeever LA, Bhark SJ, Delgado T, Salazar N, Sanchez EL. Herpes simplex virus 1 infection of neuronal and nonneuronal cells elicits specific innate immune responses and immune evasion mechanisms. Front Immunol. 2021; 12: 644664. DOI: 10.3389/fimmu.2021.644664.
  42. Nile CJ, Barksby E, Jitprasertwong P, Preshaw PM, Taylor JJ. Expression and regulation of interleukin-33 in human monocytes. Immunology. 2010; 130 (2): 172–80. DOI: 10.1111/j.1365-2567.2009.03221.x.
  43. Zhang L, Lu R, Zhao G, Pflugfelder SC, Li DQ. TLR-mediated induction of pro-allergic cytokine IL-33 in ocular mucosal epithelium. Int J Biochem Cell Biol. 2011; 43: 1383–91. DOI: 10.1016/j.biocel.2011.06.003.
  44. Furue M, Yamamura K, Kido-Nakahara M, Nakahara T, Fukui Y. Emerging role of interleukin-31 and interleukin-31 receptor in pruritus in atopic dermatitis. Allergy. 2018; 73 (1): 29–36. DOI: 10.1111/all.13239.
  45. Di Salvo E, Ventura-Spagnolo E, Casciaro M, Navarra M, Gangemi S. IL-33/IL-31 axis: a potential inflammatory pathway. Mediator Inflammat. 2018; 2018: 3858032. DOI: 10.1155/2018/3858032.