REVIEW

Photopolymerizable materials for biocompatible implantable matrices

Rudik IS1, Mironov AV1,2, Kuznetsova VS1, Vasiliev AV1,3
About authors

1 Central Research Institute of Dentistry and Maxillofacial Surgery, Moscow, Russia

2 Federal Scientific Research Center “Crystallography and Photonics”, Russian Academy of Sciences, Moscow, Russia

3 Sechenov First Moscow State Medical University, Moscow, Russia

Correspondence should be addressed: Irina S. Rudik
Timura Frunze, 16/1, k. 112, Moscow, 119021, Russia; ur.siinc@si_kidur

About paper

Author contribution: Rudik IS — literature data acquisition, analysis, systematization, review planning and writing; Mironov AV — literature data acquisition, editing, writing the conclusion; Kuznetsova VS — peer review; Vasiliev AV — review planning, structurization, peer review.

Received: 2024-07-15 Accepted: 2024-08-12 Published online: 2024-08-31
|
  1. Shi H, Li Y, Xu K, Yin J. Advantages of photo-curable collagen-based cell-laden bioinks compared to methacrylated gelatin (GelMA) in digital light processing (DLP) and extrusion bioprinting. Materials Today Bio. 2023; 23: 100799. Available from: https://doi.org/10.1016/j.mtbio.2023.100799.
  2. Zhang Q, Zhou J, Zhi P, Liu L, Liu C, Fang A, et al. 3D printing method for bone tissue engineering scaffold. Medicine in Novel Technology and Devices. 2023; 17:100205. Available from: https://doi.org/10.1016/j.medntd.2022.100205.
  3. Mohammadpour Z, Kharaziha M, Zarrabi A. 3D-printing of silk nanofibrils reinforced alginate for soft tissue engineering. Pharmaceutics. 2023; 15: 763. Available from: https://doi.org/10.3390/pharmaceutics15030763.
  4. Li C, Zheng Z, Jia J, Zhang W, Qin L, Zhang Wei, et. al. Preparation and characterization of photocurable composite extracellular matrix-methacrylated hyaluronic acid bioink. J Mater Chem B. 2022; 10: 4242–53. Available from: https://doi.org/10.1039/D2TB00548D.
  5. Ceylan G, Emik S, Yalcinyuva T, Sunbuloglu E, Bozdag E, Unalan F. The effects of cross-linking agents on the mechanical properties of poly (methyl methacrylate) resin. Polymers. 2023; 15: 2387. Available from: https://doi.org/10.3390/polym15102387.
  6. Voet V, Strating T, Schnelting G, Dijkstra P, Tietema M, Xu J, et al. Biobased acrylate photocurable resin formulation for stereolithography 3D printing. ACS Omega. 2018; 3: 1403–8. Available from: https://doi.org/10.1021/acsomega.7b01648.
  7. Tapety C, Carneiro Y, Chagas Y, Souza L, de O Souza N, Valadas L. Degree of conversion and mechanical properties of a commercial composite with an advanced polymerization system. Acta Odontol Latinoam. 2023; 36 (2): 112–9. Available from: https://doi.org/10.54589/aol.36/2/112.
  8. Kowalska A, Sokolowski J, Gozdek T, Krasowski M, Kopacz K, Bociong K. The influence of various photoinitiators on the properties of commercial dental composites. Polymers. 2021; 13: 3972. Available from: https://doi.org/10.3390/polym13223972.
  9. Fouassier JP, Lalevee J. Photoinitiators: Structures, reactivity and applications in polymerization. Weinheim, Germany: Wiley-VCH; 2021. Available from: https://doi.org/10.1002/9783527821297.
  10. Anusavice KJ, Shen C, Rawls HR. Phillips’ science of dental materials. 12th ed. USA: Elsevier Inc., 2013.
  11. Shen C, Li Y, Meng Q. Adhesive polyethylene glycol-based hydrogel patch for tissue repair. Colloids and Surfaces B: Biointerfaces. 2022; 218: 112751. Available from: https://doi.org/10.1016/j.colsurfb.2022.112751.
  12. Unger RE, Stojanovic S, Besch L, Alkildani S, Schröder R, Jung O, et al. In vivo biocompatibility investigation of an injectable calcium carbonate (vaterite) as a bone substitute including compositional analysis via SEM-EDX technology. Int J Mol Sci. 2022; 23: 1196. Available from: https://doi.org/10.3390/ijms23031196.
  13. Xi W, Hegde V, Zoller SD, Park HY, Hart CM, Kondo T, et al. Point-of-care antimicrobial coating protects orthopaedic implants from bacterial challenge. Nature Communications. 2021; 12: 5473. Available from: https://doi.org/10.1038/s41467-021-25383-z.
  14. Chen H, Lee SY, Lin YM. Synthesis and formulation of PCL-based urethane acrylates for DLP 3D printers. Polymers. 2020; 12: 1500. Available from: https://doi.org/10.3390/polym12071500.
  15. Kuang B, Yang Y, Lin H. Infiltration and in-tissue polymerization of photocross-linked hydrogel for effective fixation of implants into cartilage-an in vitro study. ACS Omega. 2019; 4: 18540–4. Available from: https://doi.org/10.1021/acsomega.9b02270.
  16. Hulmes D, P. Fratzl P, editors. Collagen: structure and mechanics. 2th ed. Boston: Springer, 2008; 15–47.
  17. Kajave NS, Schmitt T, NguyenTU, Kishore V. Dual crosslinking strategy to generate mechanically viable cellladen printable constructs using methacrylated collagen bioinks. Mater Sci Eng C Mater Biol Appl. 2020; 107: 110290. Available from: https://doi.org/10.1016/j.msec.2019.110290.
  18. Pien N, Pezzoli D, Van Hoorick J, Copes F, Vansteenland M, Albu M, et al. Development of photo-crosslinkable collagen hydrogel building blocks for vascular tissue engineering applications: A superior alternative to methacrylated gelatin. Materials Science Engineering C. 2021; 130: 112460. Available from: https://doi.org/10.1016/j.msec.2021.112460.
  19. Valentino C, Vigani B, Zucca G, Ruggeri M, Boselli C, Cornaglia AI, et al. Formulation development of collagen/chitosan-based porous scaffolds for skin wounds repair and regeneration. International Journal of Biological Macromolecules. 2023; 242: 125000. Available from: https://doi.org/10.1016/j.ijbiomac.2023.125000.
  20. Lin CW, Chen YK, Lu M, Lou KL, Yu J. Photo-crosslinked keratin/chitosan membranes as potential wound dressing materials. Polymers. 2018; 10: 987. Available from: https://doi.org/10.3390/polym10090987.
  21. Han C, Zhang H, Wu Y, He X, Chen X. Dual-crosslinked hyaluronan hydrogels with rapid gelation and high injectability for stem cell protection. Scientific Reports. 2020; 10: 14997. Available from: https://doi.org/10.1038/s41598-020-71462-4.
  22. Bankosz, M. Development of chitosan/gelatin-based hydrogels incorporated with albumin particles. International Journal of Molecular Sciences. 2022; 23: 14136. Available from: https://doi.org/ 10.3390/ijms232214136.
  23. Xiao X, Huang Z, Jiang X, Yang Y, Yang L, Yang S, et al. Facile synthesize of norbornene-hyaluronic acid to form hydrogel via thiol-norbornene reaction for biomedical application. Polymer. 2022; 245: 124696. Available from: https://doi.org/10.1016/j.polymer.2022.124696.
  24. Wang G, Cao X, Dong H, Zeng L, Yu C, Chen X. A hyaluronic acid based injectable hydrogel formed via photo-crosslinking reaction and thermal-induced Diels-Alder reaction for cartilage tissue engineering. Polymers. 2018; 10: 949. Available from: https://doi.org/10.3390/polym10090949.
  25. Maiz-Fernandez S, Perez-Alvarez L, Silvan U, Vilas-Vilela JL, Lanceros-Mendez S. Photocrosslinkable and self-healable hydrogels of chitosan and hyaluronic acid. International Journal of Biological Macromolecules. 2022; 216: 291–302. Available from: https://doi.org/10.1016/j.ijbiomac.2022.07.004.
  26. Zeng B, Cai Z, Lalevee J, Yang Q, Lai H, Xiao P, et al. Cytotoxic and cytocompatible comparison among seven photoinitiators-triggered polymers in different tissue cells. Toxicology in Vitro. 2021; 72: 105103. Available from: https://doi.org/10.1016/j.tiv.2021.105103.
  27. Li J, Wu H, Chen Y, Cao K, Li Y, Ding Q, et al. Improvement in the storage stability of camphorquinone-based photocurable materials in sunlight via Z–E photoisomerization of photomask agent. Progress Organic Coatings. 2023; 178: 107455. Available from: https://doi.org/10.1016/j.porgcoat.2023.107455.
  28. Cuevas-Suarez CE, Da Silva AF, Dallegrave A, Petzhold CL, De Pereira CM, Oliveira Da Rosa WL, et al. The role of camphorquinone in the cytotoxicity of universal dental adhesives. International Journal of Adhesion Adhesives. 2023; 127: 103519. Available from: https://doi.org/10.1016/j.ijadhadh.2023.103519.
  29. Perez-Mondragon AA, Cuevas-Suarez CE, Gonzalez-Lopez JA, Trejo-Carbajal N, Herrera-Gonzalez AM. Evaluation of new coinitiators of camphorquinone useful in the radical photopolymerization of dental monomers. Journal Photochemistry Photobiology, A: Chemistry. 2020; 403: 112844. Available from: https://doi.org/10.1016/j.jphotochem.2020.112844.
  30. Petta D, Grijpma D.W, Alini M, Eglin D, D’Este M. Threedimensional printing of a tyramine hyaluronan derivative with double gelation mechanism for independent tuning of shear thinning and postprinting curing. ACS Biomater Sci Eng. 2018; 4: 3088–98. Available from: Available from: https://doi.org/10.1021/acsbiomaterials.8b00416.
  31. Kang Y, Kim JH, Kim SY, Koh W-G, Lee HJ. Blue light-activated riboflavin phosphate promotes collagen crosslinking to modify the properties of connective tissues. Materials. 2021; 14: 5788. Available from: https://doi.org/10.3390/ma14195788.
  32. Goto R, Nishida E, Kobayashi S, Aino M, Ohno T, Iwamura Y, et al. Gelatin methacryloyl-riboflavin (GelMA-RF) hydrogels for bone regeneration. Int J Mol Sci. 2021; 22: 1635. Available from: https://doi.org/10.3390/ijms22041635.
  33. Vaidyanathan TK, Vaidyanathan J, Lizymol PP, Ariya S, Krishnan KV. Study of visible light activated polymerization in BisGMA-TEGDMA monomers with Type 1 and Type 2 photoinitiators using Raman spectroscopy. Dental Materials. 2017; 33: 1–11. Available from: https://doi.org/10.3390/ijms22041635.
  34. Nguyen AK, Goering PL, Elespuru RK, Das SS, Narayan RJ. The photoinitiator lithium phenyl (2,4,6-trimethylbenzoyl) phosphinate with exposure to 405 nm light is cytotoxic to mammalian cells but not mutagenic in bacterial reverse mutation assays. Polymers. 2020; 12: 1489. Available from: https://doi.org/10.3390/polym12071489.
  35. Xu H, Casillas J, Krishnamoorthy S, Xu C. Effects of Irgacure 2959 and lithium phenyl-2,4,6-trimethylbenzoylphosphinate on cell viability, physical properties, and microstructure in 3D bioprinting of vascular-like constructs. Biomed Mater. 2020; 15: 055021. Available from: https://doi.org/10.1088/1748-605X/ab954e.