Copyright: © 2024 by the authors. Licensee: Pirogov University.
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (CC BY).

ORIGINAL RESEARCH

Role of oxidative stress in pathogenesis of bone destruction syndrome in patients with chronic lymphocytic leukemia

Osikov MV1,2, Korobkin EA1,2
About authors

1 South Ural State Medical University, Chelyabinsk, Russia

2 Chelyabinsk Regional Clinical Hospital, Chelyabinsk, Russia

Correspondence should be addressed: Mikhail V. Osikov
Vorovsky, 64, Chelyabinsk, 454092, Russia; ur.xednay@vokiso.forp

About paper

Author contribution: Osikov MV — developing the study idea, concept, and design, editing and approval of the final version of the manuscript; Korobkin EA — experimental phase of the study, statistical data processing, data interpretation, manuscript writing and editing.

Compliance with ethical standards: the study was approved by the Ethics Committee of the South Ural State Medical University (protocol No. 3 dated 10 April 2023). All subjects submitted the informed consent to participation in the study.

Received: 2024-10-11 Accepted: 2024-11-13 Published online: 2024-11-30
|
  1. Nikitin EA, Bjalik TE, Zarickij AYu, Iseber L, Kaplanov KD, Lopatkina TN, i dr. Hronicheskij limfocitarnyj lejkoz/limfoma iz malyh limfocitov. Klinicheskie rekomendacii. Sovremennaja Onkologija. 2020; 22 (3): 24–44. DOI: 10.26442/18151434.2020.3.200385. Russian.
  2. Kaprin AD, Starinskij VV, Shahzadova AO, Lisichnikova IV. Zlokachestvennye novoobrazovanija v Rossii v 2022 godu (zabolevaemost' i smertnost'). M-vo zdravoohranenija Rossijskoj Federacii, MNIOI im. P.A. Gercena — filial FGBU «NMIC radiologii». Moskva: Kollektiv avtorov, 2023; 275 s. Russian.
  3. Petty L, Stephens D, Sharma A. Risk Factors for Fragility Fractures in Chronic Lymphocytic Leukemia. Cureus. 2024; 16 (2): e54774. DOI: 10.7759/cureus.54774.
  4. Giannoni P, Marini C, Cutrona G, Sambuceti GM, Fais F, de Totero D. Unraveling the Bone Tissue Microenvironment in Chronic Lymphocytic Leukemia. Cancers (Basel). 2023; 15 (20): 5058. DOI: 10.3390/cancers15205058.
  5. D'Arena G, Seneca E, Migliaccio I, De Feo V, Giudice A, La Rocca F, et al. Oxidative stress in chronic lymphocytic leukemia: still a matter of debate. Leuk Lymphoma. 2019; 60 (4): 867–5. DOI: 10.1080/10428194.2018.1509317.
  6. Sciaccotta R, Gangemi S, Penna G, Giordano L, Pioggia G, Allegra A. Potential New Therapies "ROS-Based" in CLL: An Innovative Paradigm in the Induction of Tumor Cell Apoptosis. Antioxidants (Basel). 2024; 13 (4): 475. DOI: 10.3390/antiox13040475.
  7. Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, et al. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol. 2023; 97 (10): 2499–574. DOI: 10.1007/s00204-023-03562-9.
  8. Belaja ZhE, Belova KYu, Birjukova EV, Dedov II, Dzeranova LK, Drapkina OM, i dr. Federal'nye klinicheskie rekomendacii po diagnostike, lecheniju i profilaktike osteoporoza. Osteoporoz i osteopatii. 2021; 24 (2): 4–47. DOI: org/10.14341/osteo12930. Russian.
  9. Volchegorskij IA, Dolgushin II, Kolesnikov OL, Cejlikman VYe. Jeksperimental'noe modelirovanie i laboratornaja ocenka adaptivnyh reakcij organizma. Cheljabinsk: ChelGPU, 2000; 167 s. Russian.
  10. Chaudhary P, Janmeda P, Docea AO, Yeskaliyeva B, Abdull Razis AF, Modu B, et al. Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases. Front Chem. 2023; 11: 1158198. DOI: 10.3389/fchem.2023.1158198.
  11. Zhivodernikov IV, Kirichenko TV, Markina YV, Postnov AY, Markin AM. Molecular and Cellular Mechanisms of Osteoporosis. Int J Mol Sci. 2023; 24 (21): 15772. DOI: 10.3390/ijms242115772.
  12. Pagano MA, Frezzato F, Visentin A, Trentin L, Brunati AM. Protein Phosphorylation and Redox Status: An as Yet Elusive Dyad in Chronic Lymphocytic Leukemia. Cancers (Basel). 2022;14 (19): 4881. DOI: 10.3390/cancers14194881.
  13. Han J, Yang K, An J, Jiang N, Fu S, Tang X. The Role of NRF2 in Bone Metabolism — Friend or Foe? Front Endocrinol (Lausanne). 2022; 13: 813057. DOI: 10.3389/fendo.2022.813057.
  14. Ma F, Luo S, Lu C, Jiang X, Chen K, Deng J, et al. The role of Nrf2 in periodontal disease by regulating lipid peroxidation, inflammation and apoptosis. Front Endocrinol (Lausanne). 2022; 13: 963451. DOI: 10.3389/fendo.2022.963451.
  15. Marcucci G, Domazetovic V, Nediani C, Ruzzolini J, Favre C, Brandi ML. Oxidative Stress and Natural Antioxidants in Osteoporosis: Novel Preventive and Therapeutic Approaches. Antioxidants (Basel). 2023; 12 (2): 373. DOI: 10.3390/antiox12020373.
  16. Gao Y, Patil S, Jia J. The Development of Molecular Biology of Osteoporosis. Int J Mol Sci. 2021; 22 (15): 8182. DOI: 10.3390/ijms22158182.
  17. Zhou X, Yuan W, Xiong X, Zhang Z, Liu J, Zheng Y, et al. HO-1 in Bone Biology: Potential Therapeutic Strategies for Osteoporosis. Front Cell Dev Biol. 2021; 9: 791585. DOI: 10.3389/fcell.2021.791585.
  18. Vervloet MG. Shedding Light on the Complex Regulation of FGF23. Metabolites. 2022; 12 (5): 401. DOI: 10.3390/metabo12050401.
  19. Domazetovic V, Falsetti I, Ciuffi S, Iantomasi T, Marcucci G, Vincenzini MT, et al. Effect of Oxidative Stress-Induced Apoptosis on Active FGF23 Levels in MLO-Y4 Cells: The Protective Role of 17-β-Estradiol. Int J Mol Sci. 2022; 23 (4): 2103. DOI: 10.3390/ijms23042103.
  20. El-Gazzar A, Högler W. Mechanisms of Bone Fragility: From Osteogenesis Imperfecta to Secondary Osteoporosis. Int J Mol Sci. 2021; 22 (2): 625. DOI: 10.3390/ijms22020625.