Авторские права: © 2025 принадлежат авторам. Лицензиат: РНИМУ им. Н.И. Пирогова.
Статья размещена в открытом доступе и распространяется на условиях лицензии Creative Commons Attribution (CC BY).

ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ

Особенности данных биоимпедансометрии и электромиографии у детей с детским церебральным параличом

С. В. Власенко, Г. В. Лёвин, Э. А. Османов
Информация об авторах

Научно-исследовательский институт детской курортологии, физиотерапии и медицинской реабилитации, Евпатория, Россия

Для корреспонденции: Глеб Валерьевич Лёвин
ул. Маяковского, д. 6, г. Евпатория, 297412, Россия; moc.liamg@2002vgnivel

Информация о статье

Вклад авторов: С. В. Власенко — концепция исследования, разработка методологии, анализ и систематизация экспериментальных данных, интерпретация результатов; Г. В. Лёвин — сбор, систематизация и аккумулирование данных, статистическая обработка, написание и оформление рукописи; Э. А. Османов — сравнительный анализ данных, обобщение результатов, формулировка выводов, редактирование рукописи, работа с графическим материалом.

Соблюдение этических стандартов: исследование одобрено этическим комитетом ГБУЗ РК «НИИ ДКФ и МР» (протокол № 21 от 14 декабря 2022 г.). Все пациенты подписали добровольное информированное согласие на участие.

Статья получена: 19.12.2024 Статья принята к печати: 18.02.2025 Опубликовано online: 27.02.2025
|
  1. McIntyre S, Goldsmith S, Webb A, Ehlinger V, Hollung SJ, McConnell, et al. Global CP Prevalence Group. Global prevalence of cerebral palsy: A systematic analysis. Developmental medicine and child neurology. 2022; 64 (12): 1494–506. Available from: https://doi.org/10.1111/dmcn.15346.
  2. Novak I, Morgan C, Fahey M, Finch-Edmondson M, Galea C, Hines, et al. State of the Evidence Traffic Lights 2019: Systematic Review of Interventions for Preventing and Treating Children with Cerebral Palsy. Current neurology and neuroscience reports. 2020; 20 (2): 3. Available from: https://doi.org/10.1007/s11910-020-1022-z.
  3. Patel DR, Neelakantan M, Pandher K, Merrick J. Cerebral palsy in children: a clinical overview. Translational pediatrics. 2020; 9 (Suppl 1): S125–S135. Available from: https://doi.org/10.21037/tp.2020.01.01.
  4. Panda S, Singh A, Kato H, Kokhanov A. Cerebral Palsy: A Current Perspective. NeoReviews. 2024; 25 (6): e350–e360. Available from: https://doi.org/10.1542/neo.25-6-e350.
  5. Jesus AO, Stevenson RD. Optimizing Nutrition and Bone Health in Children with Cerebral Palsy. Physical medicine and rehabilitation clinics of North America. 2020; 31 (1): 25–37. Available from: https://doi.org/10.1016/j.pmr.2019.08.001.
  6. Metshein M, Tuulik VR, Tuulik V, Kumm M, Min M, Annus P. Electrical Bioimpedance Analysis for Evaluating the Effect of Pelotherapy on the Human Skin: Methodology and Experiments. Sensors (Basel, Switzerland). 2023; 23 (9): 4251. Available from: https://doi.org/10.3390/s23094251.
  7. Arruda RCBF, Tassitano RM, da Silva Brito AL, de Sousa Martins OS, Cabral PC, de Castro Antunes MM. Physical activity, sedentary time and nutritional status in Brazilian children with cerebral palsy. Jornal de pediatria. 2022; 98 (3): 303–9. Available from: https://doi.org/10.1016/j.jped.2021.07.005.
  8. Costa A, Martin A, Arreola V, Riera SA, Pizarro A, Carol, et al. Assessment of Swallowing Disorders, Nutritional and Hydration Status, and Oral Hygiene in Students with Severe Neurological Disabilities Including Cerebral Palsy. Nutrients. 2021; 13 (7): 2413. Available from: https://doi.org/10.3390/nu13072413.
  9. Savikangas T, Valadão P, Haapala EA, Finni T. Effects of multicomponent exercise intervention on cardiometabolic risk factors in children and young adults with cerebral palsy: a multiple-baseline trial. BMC sports science, medicine & rehabilitation. 2024; 16 (1): 219. Available from: https://doi.org/10.1186/s13102-024-01006-0.
  10. Więch P, Ćwirlej-Sozańska A, Wiśniowska-Szurlej A, Kilian J, Lenart-Domka E, Bejer A, et al. The Relationship Between Body Composition and Muscle Tone in Children with Cerebral Palsy: A Case-Control Study. Nutrients. 2020; 12 (3): 864. Available from: https://doi.org/10.3390/nu12030864.
  11. Talma H, Chinapaw MJ, Bakker B, HiraSing RA, Terwee CB, Altenburg TM. Bioelectrical impedance analysis to estimate body composition in children and adolescents: a systematic review and evidence appraisal of validity, responsiveness, reliability and measurement error. Obesity reviews: an official journal of the International Association for the Study of Obesity. 2013; 14 (11): 895–905. Available from: https://doi.org/10.1111/obr.12061.
  12. Snik DAC, de Roos NM. Criterion validity of assessment methods to estimate body composition in children with cerebral palsy: A systematic review. Annals of physical and rehabilitation medicine. 2021; 64 (3): 101271. Available from: https://doi.org/10.1016/j.rehab.2019.05.003
  13. Jiang F, Tang S, Eom JJ, Song KH, Kim H, Chung S, et al. Accuracy of Estimated Bioimpedance Parameters with Octapolar Segmental Bioimpedance Analysis. Sensors (Basel, Switzerland). 2022; 22 (7): 2681. Available from: https://doi.org/10.3390/s22072681.
  14. Szkoda L, Szopa A, Kwiecień-Czerwieniec I, Siwiec A, DomagalskaSzopa M. Body Composition in Outpatient Children with Cerebral Palsy: A Case-Control Study. International journal of general medicine. 2023; 16: 281–91. Available from: https://doi.org/10.2147/IJGM.S393484.
  15. Jahan I, Sultana R, Muhit M, Akbar D, Karim T, Al Imam MH, et al. Nutrition Interventions for Children with Cerebral Palsy in Low- and Middle-Income Countries: A Scoping Review. Nutrients. 2022; 14 (6): 1211. Available from: https://doi.org/10.3390/nu14061211.
  16. Sørensen SJ, Brekke G, Kok K, Sørensen JL, Born AP, Mølgaard C, et al. Nutritional screening of children and adolescents with cerebral palsy: a scoping review. Developmental medicine and child neurology. 2021; 63 (12): 1374–81. Available from: https://doi.org/10.1111/dmcn.14981.
  17. Friedman JM, van Essen P, van Karnebeek CDM. Cerebral palsy and related neuromotor disorders: Overview of genetic and genomic studies. Molecular genetics and metabolism. 2022; 137 (4): 399– 419. Available from: https://doi.org/10.1016/j.ymgme.2021.11.001.
  18. Alcan V, Zinnuroğlu M. Current developments in surface electromyography. Turkish journal of medical sciences. 2023; 53 (5): 1019–31. Available from: https://doi.org/10.55730/1300-0144.5667.
  19. Murakami Y, Honaga K, Kono H, Haruyama K, Yamaguchi T, Tani M, et al. New Artificial Intelligence-Integrated Electromyography-Driven Robot Hand for Upper Extremity Rehabilitation of Patients With Stroke: A Randomized, Controlled Trial. Neurorehabilitation and neural repair. 2023; 37 (5): 298–306. Available from: https://doi.org/10.1177/15459683231166939.
  20. Yamaguchi S, Inami T, Ishida H, Nagata N, Murayama M, Morito A, et al. Bioimpedance analysis for identifying new indicators of exercise-induced muscle damage. Scientific reports. 2024; 14 (1): 15299. Available from: https://doi.org/10.1038/s41598-024-66089-8.
  21. Ward LC, Brantlov S. Bioimpedance basics and phase angle fundamentals. Reviews in endocrine & metabolic disorders. 2023; 24 (3): 381–91. Available from: https://doi.org/10.1007/s11154-02209780-3.
  22. Uemura K, Doi T, Tsutsumimoto K, Nakakubo S, Kim MJ, Kurita S, et al. Predictivity of bioimpedance phase angle for incident disability in older adults. Journal of cachexia, sarcopenia and muscle. 2020; 11 (1): 46–54. Available from: https://doi.org/10.1002/jcsm.12492.
  23. Mehra A, Starkoff BE, Nickerson BS. The evolution of bioimpedance analysis: From traditional methods to wearable technology. Nutrition. 2024; 129: 112601. Available from: https://doi.org/10.1016/j.nut.2024.112601.
  24. Sung WJ, Kim WJ, Hwang Y, Kim JS, Lim SH, Hong BY. Body composition of school-aged children with disabilities. Pediatrics international: official journal of the Japan Pediatric Society. 2020; 62 (8): 962–9. Available from: https://doi.org/10.1111/ped.14248.
  25. Du J, Yu H, Shi P, Fang F. High Precision Portable Bioimpedance Spectrometer for Enhanced Clinical Diagnostics. 2024; 794–9. Available from: https://doi.org/10.1109/icma61710.2024.10633039.
  26. Akamatsu Y, Kusakabe T, Arai H, Yamamoto Y, Nakao K, Ikeue K, et al. Phase angle from bioelectrical impedance analysis is a useful indicator of muscle quality. Journal of cachexia, sarcopenia and muscle. 2022; 13 (1): 180–9. Available from: https://doi.org/10.1002/jcsm.12860.
  27. Di Vincenzo O, Marra M, Di Gregorio A, Pasanisi F, Scalfi L. Bioelectrical impedance analysis (BIA) -derived phase angle in sarcopenia: A systematic review. Clinical nutrition. 2021; 40 (5): 3052–61. Available from: https://doi.org/10.1016/j.clnu.2020.10.048.
  28. Wu H, Ding P, Wu J, Yang P, Tian Y, Zhao Q. Phase angle derived from bioelectrical impedance analysis as a marker for predicting sarcopenia. Frontiers in nutrition. 2022; 9: 1060224. Available from: https://doi.org/10.3389/fnut.2022.1060224.
  29. Jaleel A, Chilumula M, Chukkala Satya SG, Singnale P, Telikicherla UR, Pandurangi R. The Assessment of Nutritional Status of Adolescents Aged 15-18 Years Using BMI Cutoffs and BMI Z Scores: A Secondary Analysis of National Family Health Survey-5 (2019-21) Data. Cureus. 2024; 16 (5): e59800. Available from: https://doi.org/10.7759/cureus.59800.
  30. Calcaterra V, Pelizzo G, Cena H. BMI Is a Poor Predictor of Nutritional Status in Disabled Children. What Is the Most Recommended Method for Body Composition Assessment in This Pediatric Population, Frontiers in pediatrics. 2019; 7, 226. Available from: https://doi.org/10.3389/fped.2019.00226.