Авторские права: © 2025 принадлежат авторам. Лицензиат: РНИМУ им. Н.И. Пирогова.
Статья размещена в открытом доступе и распространяется на условиях лицензии Creative Commons Attribution (CC BY).

МЕТОД

Сравнительный анализ биохимических маркеров клеточных органелл сперматозоида человека при помощи конфокальной рамановской спектроскопии

Р. В. Назаренко1, А. В. Иржак2, Б. Р. Гвасалия3, Д. Ю. Пушкарь3
Информация об авторах

1 ООО «Клиника профессора Здановского», Москва, Россия

2 Институт проблем технологии микроэлектроники и особо чистых материалов, Российской академии наук, Черноголовка, Россия

3 Российский университет медицины, Москва, Россия

Для корреспонденции: Руслан Вадимович Назаренко
moc.liamg@davsurzan

Информация о статье

Вклад авторов: Р. В. Назаренко — сбор и анализ данных, написание текста статьи; А. В. Иржак — сбор и анализ данных; Б. Р. Гвасалия, Д. Ю. Пушкарь — редактирование статьи.

Соблюдение этических стандартов: исследование одобрено этическим комитетом ФГБУ «НМИЦ АГП им. В. И. Кулакова» (протокол № 10 от 28 октября 2021 г.).

Статья получена: 22.02.2025 Статья принята к печати: 17.03.2025 Опубликовано online: 31.03.2025
|
  1. Speyer BE, Pizzey AR, Ranieri M, Joshi R, Delhanty JDA, Serhal P. Fall in implantation rates following ICSI with sperm with high DNA fragmentation. Human Reproduction. Oxford University Press (OUP). 2010; 25 (7): 1609–18. Available from: http://dx.doi.org/10.1093/humrep/deq116.
  2. Fu W, Cui Q, Yang Z, Bu Z, Shi H, Bi B, et al. High sperm DNA fragmentation increased embryo aneuploidy rate in patients undergoing preimplantation genetic testing. Reproductive BioMedicine Online. 2023; 47 (6): 103366. Available from: http://dx.doi.org/10.1016/j.rbmo.2023.103366.
  3. Evenson DP, Larson KL, Jost LK. Sperm Chromatin Structure Assay: Its Clinical Use for Detecting Sperm DNA Fragmentation in Male Infertility and Comparisons With Other Techniques. Journal of Andrology. Wiley-Blackwell. 2002; 23 (1): 25–43. Available from: http://dx.doi.org/10.1002/j.1939-4640.2002.tb02599.x.
  4. Tesarik J, Mendoza-Tesarik R, Mendoza C. Sperm nuclear DNA damage: update on the mechanism, diagnosis and treatment. Reproductive BioMedicine Online. Elsevier BV. 2006; 12 (6): 715– 21. Available from: http://dx.doi.org/10.1016/s1472-6483(10)61083-8.
  5. Chi H-J, Chung D-Y, Choi S-Y, Kim J-H, Kim G-Y, Lee J-S, et al. Integrity of human sperm DNA assessed by the neutral comet assay and its relationship to semen parameters and clinical outcomes for the IVF-ET program. Clinical and Experimental Reproductive Medicine. The Korean Society for Reproductive Medicine (KAMJE); 2011; 38 (1): 10. Available from: http://dx.doi.org/10.5653/cerm.2011.38.1.10.
  6. Sharma R, Iovine C, Agarwal A, Henkel R. TUNEL assay — Standardized method for testing sperm DNA fragmentation. Andrologia. 2020; 53 (2). Available from: http://dx.doi.org/10.1111/and.13738.
  7. Andrabi SW, Ara A, Saharan A, Jaffar M, Gugnani N, Esteves SC. Sperm DNA fragmentation test: usefulness in assessing male fertility and assisted reproductive technology outcomes. Panminerva Medica. 2023; 65 (2). Available from: http://dx.doi.org/10.23736/s0031-0808.23.04836-x.
  8. Kubasek WL, Wang Y, Thomas GA, Patapoff TW, Schoenwaelder KH, Van der Sande JH, et al. Raman spectra of the model B-DNA oligomer d(CGCGAATTCGCG)2 and of the DNA in living salmon sperm show that both have very similar B-type conformations. Biochemistry. American Chemical Society (ACS). 1986; 25 (23): 7440–5. Available from: http://dx.doi.org/10.1021/bi00371a028.
  9. Huser T, Orme CA, Hollars CW, Corzett MH, Balhorn R. Raman spectroscopy of DNA packaging in individual human sperm cells distinguishes normal from abnormal cells. Journal of Biophotonics. Wiley-Blackwell. 2009; 2 (5): 322–32. Available from: http://dx.doi.org/10.1002/jbio.200910012.
  10. Meister K, Schmidt DA, Bründermann E, Havenith M. Confocal Raman microspectroscopy as an analytical tool to assess the mitochondrial status in human spermatozoa. The Analyst. Royal Society of Chemistry (RSC). 2010; 135 (6): 1370. Available from: http://dx.doi.org/10.1039/b927012d.
  11. Mallidis C, Wistuba J, Bleisteiner B, Damm OS, Gross P, Wubbeling F, et al. In situ visualization of damaged DNA in human sperm by Raman microspectroscopy. Human Reproduction. Oxford University Press (OUP). 2011; 26 (7): 1641–9. Available from: http://dx.doi.org/10.1093/humrep/der122.
  12. Sánchez V, Redmann K, Wistuba J, Wübbeling F, Burger M, Oldenhof H, et al. Oxidative DNA damage in human sperm can be detected by Raman microspectroscopy. Fertility and Sterility. Elsevier BV. 2012; 98 (5): 1124–9.e3. Available from: http://dx.doi.org/10.1016/j.fertnstert.2012.07.1059.
  13. Nazarenko RV, Irzhak AV, Pomerantsev AL, Rodionova OYe. Confocal Raman spectroscopy and multivariate data analysis for evaluation of spermatozoa with normal and abnormal morphology. A feasibility study. Chemometrics and Intelligent Laboratory Systems. 2018; 182: 172–9. Available from: http://dx.doi.org/10.1016/j.chemolab.2018.10.002.
  14. Jahmani MY, Hammadeh ME, Al Smadi MA, Baller MK. Label-Free Evaluation of Chromatin Condensation in Human Normal Morphology Sperm Using Raman Spectroscopy. Reproductive Sciences. 2021; 28 (9): 2527–39. Available from: http://dx.doi.org/10.1007/s43032-021-00494-6.
  15. Edengeiser E, Meister K, Bründermann E, Büning S, Ebbinghaus S, Havenith M, Non-invasive chemical assessment of living human spermatozoa. RSC Adv. 2015; 5: 10424–9. Available from: https://doi.org/10.1039/c4ra12158a.
  16. Li M, Ji Y, Wang D, Zhang Y, Zhang H, Tang Y, et al. Evaluation of Laser Confocal Raman Spectroscopy as a Non-Invasive Method for Detecting Sperm DNA Contents. Frontiers in Physiology. 2022; 13. Available from: http://dx.doi.org/10.3389/fphys.2022.827941.
  17. Li X, Wang M, Chen H, Li Q, Yang H, Xu H, et al. Flow cytometric and near-infrared Raman spectroscopic investigation of quality in stained, sorted, and frozen-thawed buffalo sperm. Animal Reproduction Science. Elsevier BV. 2016; 170: 90–9. Available from: http://dx.doi.org/10.1016/j.anireprosci.2016.04.008.
  18. Ellis DI, Cowcher DP, Ashton L, O’Hagan S, Goodacre R. Illuminating disease and enlightening biomedicine: Raman spectroscopy as a diagnostic tool. The Analyst. Royal Society of Chemistry (RSC). 2013; 138 (14): 3871. Available from: http://dx.doi.org/10.1039/c3an00698k.
  19. Ferrara M, Di Caprio G, Managò S, De Angelis A, Sirleto L, Coppola G, et al. Label-Free Imaging and Biochemical Characterization of Bovine Sperm Cells. Biosensors. MDPI AG. 2015; 5 (2): 141–57. Available from: http://dx.doi.org/10.3390/bios5020141.
  20. Li N, Chen D, Xu Y, Liu S, Zhang H. Confocal Raman microspectroscopy for rapid and label-free detection of maleic acid-induced variations in human sperm. Biomedical Optics Express. The Optical Society. 2014; 5 (5): 1690. Available from: http://dx.doi.org/10.1364/boe.5.001690.
  21. Rimskaya E, Gorevoy A, Shelygina S, Perevedentseva E, Timurzieva A, Saraeva I, et al. Multi-Wavelength Raman Differentiation of Malignant Skin Neoplasms. International Journal of Molecular Sciences. 2024; 25 (13): 7422. Available from: http://dx.doi.org/10.3390/ijms25137422.