This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (CC BY).
ORIGINAL RESEARCH
Differentiation of iPSCs into corneal epithelial precursors in three-dimensional In vitro culture
1 Pirogov Russian National Research Medical University, Moscow, Russia
2 Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
Correspondence should be addressed: Nadezhda G. Gurskaya
Ostrovityanova, 1, str. 1, Moscow, 117997, Russia; ur.liam@ayaksrugn
Funding: the work was supported by a grant from the Ministry of Health of the Russian Federation, project No. 124021000001-09.
Acknowledgements: the authors thank M. A. Lagarkova, Corresponding Member of the Russian Academy of Sciences, Professor, for fruitful discussion of the work and critical comments.
Author contribution: Zhigmitova EB — design and conduct of the experiment, Kosykh AV — material processing, micrography, preparation of the article, Gurskaya NG — concept, design of the work, primary manuscript editing.
- Porth JM, Deiotte E, Dunn M, Bashshur R. A Review of the Literature on the Global Epidemiology of Corneal Blindness. Cornea. 2019; 38 (12): 1602–9.
- Gain P, Jullienne R, He Z, et al. Global Survey of Corneal Transplantation and Eye Banking. JAMA Ophthalmol. 2016; 134 (2): 167–73.
- Hernández J, Panadero-Medianero C, Arrázola MS, Ahumada M. Mimicking the Physicochemical Properties of the Cornea: A Low-Cost Approximation Using Highly Available Biopolymers. Polymers (Basel). 2024; 16 (8): 1118.
- Griffith M, Polisetti N, Kuffova L, Gallar J, Forrester J, Vemuganti GK, Fuchsluger TA. Regenerative approaches as alternatives to donor allografting for restoration of corneal function. Ocul Surf. 2012; 10 (3): 170–83.
- Ludwig PE, Lopez MJ, Czyz CN. Embryology, Eye Malformations. [Updated 2023 Apr 3]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan [cited 2025 Nov 19]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK482496/#.
- Hirami Y, Mandai M, Sugita S, Maeda A, Maeda T, Yamamoto M, et al. Safety and stable survival of stem-cell-derived retinal organoid for 2 years in patients with retinitis pigmentosa. Cell Stem Cell. 2023; 30 (12): 1585–1596.
- Hirayama M, Hatou S, Nomura M, Hokama R, Hirayama OI, Inagaki E, et al. A first-in-human clinical study of an allogenic iPSC-derived corneal endothelial cell substitute transplantation for bullous keratopathy. Cell Rep Med. 2025; 6 (1): 101847.
- Haritonov AE, Surdina AV, Lebedeva OS, Bogomazova AN, Lagarkova MA. Vozmozhnosti ispol'zovaniya plyuripotentnyh stvolovyh kletok dlya vosstanovleniya povrezhdennogo pigmentnogo epiteliya setchatki glaza. Acta Naturae. 2018; 10 (3): 30–39. Russian.
- Chandran C, Santra M, Rubin E, Geary ML, Yam GH. Regenerative Therapy for Corneal Scarring Disorders. Biomedicines. 2024; 12 (3): 649.
- Tong L, Hodgkins PR, Denyer J, Brosnahan D, Harper J, Russell- Eggitt I, et al. The eye in epidermolysis bullosa. Br J Ophthalmol. 1999; 83 (3) :323–6.
- Hayashi R, Ishikawa Y, Ito M, Kageyama T, Takashiba K, Fujioka T, et al. Generation of corneal epithelial cells from induced pluripotent stem cells derived from human dermal fibroblast and corneal limbal epithelium. PLoS One. 2012; 7 (9): e45435.
- Hongisto H, Ilmarinen T, Vattulainen M, Mikhailova A, Skottman H. Xeno- and feeder-free differentiation of human pluripotent stem cells to two distinct ocular epithelial cell types using simple modifications of one method. Stem Cell Res Ther. 2017; 8 (1): 291.
- Ahmad S, Stewart R, Yung S, Kolli S, Armstrong L, Stojkovic M, et al. Differentiation of human embryonic stem cells into corneal epithelial-like cells by in vitro replication of the corneal epithelial stem cell niche. Stem Cells. 2007; 25 (5): 1145–55.
- Lee HS, Mok J, Joo CK. Bone Morphogenetic Protein 4 (BMP4) enhances the differentiation of human induced pluripotent stem cells into limbal progenitor cells. Curr Issues Mol Biol. 2021; 43 (3): 2124–34.
- Poli M, Burillon C, Auxenfans C, Rovere MR, Damour O. Immunocytochemical Diagnosis of Limbal Stem Cell Deficiency: Comparative Analysis of Current Corneal and Conjunctival Biomarkers. Cornea. 2015; 34 (7): 817–23.
- Forrester JV, Dick AD, McMenamin PG, Roberts F, Pearlman E, editors. The Eye. 2016; p. 1–102.
- Hori J, Yamaguchi T, Keino H, Hamrah P, Maruyama K. Immune privilege in corneal transplantation. Prog Retin Eye Res. 2019; 72: 100758.
- Isla-Magrané H, Veiga A, García-Arumí J, Duarri A. Multiocular organoids from human induced pluripotent stem cells displayed retinal, corneal, and retinal pigment epithelium lineages. Stem Cell Res Ther. 2021; 12 (1): 581.
- Chen X, Sun G, Tian E, Zhang M, Davtyan H, Beach TG, et al. Modeling Sporadic Alzheimer's Disease in Human Brain Organoids under Serum Exposure. Adv Sci (Weinh). 2021; 8 (18): e2101462.
- Sakalem ME, De Sibio MT, da Costa FADS, de Oliveira M. Historical evolution of spheroids and organoids, and possibilitiesof use in life sciences and medicine. Biotechnol J. 2021; 16 (5): e2000463.
- Maliszewska-Olejniczak K, Brodaczewska KK, Bielecka ZF, Solarek W, Kornakiewicz A, Szczylik C, Porta C, et al. Development of extracellular matrix supported 3D culture of renal cancer cells and renal cancer stem cells. Cytotechnology. 2019; 71 (1): 149–63.
- Buchholz DE, Pennington BO, Croze RH, Hinman CR, Coffey PJ, Clegg DO. Rapid and efficient directed differentiation of human pluripotent stem cells into retinal pigmented epithelium. Stem Cells Transl Med. 2013; 2 (5): 384–93.
- Zhu J, Reynolds J, Garcia T, Cifuentes H, Chew S, Zeng X, et al. Generation of Transplantable Retinal Photoreceptors from a Current Good Manufacturing Practice-Manufactured Human Induced Pluripotent Stem Cell Line. Stem Cells Transl Med. 2018; 7 (2): 210–19.
- Soma T, Oie Y, Takayanagi H, Matsubara S, Yamada T, Nomura M, Yoshinaga Y, et al. Induced pluripotent stem-cell-derived corneal epithelium for transplant surgery: a single-arm, open-label, first-in-human interventional study in Japan. Lancet. 2024; 404 (10466): 1929–39.