Авторские права: © 2025 принадлежат авторам. Лицензиат: РНИМУ им. Н.И. Пирогова.
Статья размещена в открытом доступе и распространяется на условиях лицензии Creative Commons Attribution (CC BY).

ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ

Периваскулярные мастоциты и ангиогенез в опухолевом микроокружении синовиальной саркомы

Д. В. Буланов1,2, Д. Р. Махачев1, М. А. Сунцов1, Д. С. Губич1, Ю. Д. Филиппова1, А. А. Крутилина1, А. В. Свояк1, А. А. Иванникова1, Р. М. Габибуллаев3
Информация об авторах

1 Российский национальный исследовательский медицинский университет имени Н. И. Пирогова (Пироговский университет), Москва, Россия

2 Национальный медицинский исследовательский центр травматологии и ортопедии имени Н. Н. Приорова, Москва, Россия

3 Научный медицинский исследовательский центр эндокринологии имени И. И. Дедова, Москва, Россия

Для корреспонденции: Далгат Рамазанович Махачев
ул. Академика Волгина, д. 37, г. Москва, 117437, Россия; ur.liam@2002taglad

Информация о статье

Вклад авторов: Д. В. Буланов — руководство исследованием, разработка концепции и дизайна работы, редактирование текста статьи; Д. Р. Махачев, М. А. Сунцов, Д. С. Губич — анализ и интерпретация данных, написание текста статьи, редактирование; Ю. Д. Филиппова, А. А. Крутилина, Р. М. Габибуллаев, А. В. Свояк, А. А. Иванникова — сбор клинических данных, редактирование.

Статья получена: 07.10.2025 Статья принята к печати: 05.11.2025 Опубликовано online: 21.11.2025
|
  1. Fiore M, Sambri A, Spinnato P, et al. The biology of synovial sarcoma: state-of-the-art and future perspectives. Curr Treat Options Oncol. 2021; 22 (12): 109. DOI: 10.1007/s11864-021-00914-4.
  2. Gazendam AM, Popovic S, Munir S, et al. Synovial sarcoma: a clinical review. Curr Oncol. 2021; 28 (3): 1909–20. DOI: 10.3390/curroncol28030177.
  3. Ribatti D. Tryptase and tumor angiogenesis. Front Oncol. 2024; 14: 1500482. DOI: 10.3389/fonc.2024.1500482.
  4. Ammendola M, Gadaleta CD, Patruno R, et al. Mast cells positive for c-Kit receptor and tryptase correlate with angiogenesis in cancerous and adjacent normal pancreatic tissue. Cells. 2021; 10 (2): 444. DOI: 10.3390/cells10020444.
  5. Segura-Villalobos D, Bazany-Rosenzweig NR, Mayoral RJ, et al. Mast cell–tumor interactions: molecular mechanisms and clinical perspectives. Cells. 2022; 11 (3): 349. DOI: 10.3390/cells11030349.
  6. Liu Z, Wang L, Wang J, et al. Angiogenic signaling pathways and anti-angiogenic therapy. Signal Transduct Target Ther. 2023; 8: 227. DOI: 10.1038/s41392-023-01460-1.
  7. Panagi M, Lesuy Y, Tosti R, et al. Stabilizing tumor-resident mast cells restores T-cell infiltration in sarcomas and potentiates PD-L1 inhibition. Clin Cancer Res. 2024; 30 (11): 2582–97. DOI: 10.1158/1078-0432.CCR-24-0246.
  8. Toulmonde M, Guégan J-P, Spalato-Ceruso M, et al. Reshaping the tumor microenvironment of cold soft-tissue sarcomas with anti-angiogenics: a phase 2 trial of regorafenib combined with avelumab. Signal Transduct Target Ther. 2025; 10: 202. DOI: 10.1038/s41392-025-02278-9.
  9. Piccolo S, Panciera T, Contessotto P, Cordenonsi M. YAP/TAZ as master regulators in cancer: modulation, function and therapeutic approaches. Nat Cancer. 2023; 4 (1): 9–26. DOI: 10.1038/s43018-022-00473-z.
  10. Chapeau EA, Sansregret L, Galli GG, Chène P, Wartmann M, Mourikis TP, et al. Direct and selective pharmacological disruption of the YAP–TEAD interface by IAG933 inhibits Hippo-dependent and RAS–MAPK-altered cancers. Nat Cancer. 2024; 5 (7): 1102– 20. DOI: 10.1038/s43018-024-00754-9.
  11. Luk S, Chokshi PR, Torres-Rodriguez I, et al. Immunological differences between monophasic and biphasic synovial sarcoma. Cancer Immunol Immunother. 2024; 74 (1): 31. DOI: 10.1007/s00262-024-03868-2.
  12. Wisdom AJ, Mowery YM, Hong CS, et al. Single cell analysis reveals distinct immune landscapes in transplant and primary sarcomas that determine response or resistance to immunotherapy. Nat Commun. 2020; 11: 6410. DOI: 10.1038/s41467-020-19917-0.
  13. Medina-Ceballos E, Liotta A, Ali S, et al. The prognostic impact of the tumor immune microenvironment in synovial sarcoma: an immunohistochemical analysis using digital pathology and conventional scoring. J Pers Med. 2025; 15 (5): 169. DOI: 10.3390/jpm15050169.
  14. Giner F, Medina-Ceballos E, López-Reig R, et al. The combined immunohistochemical expression of GLI1 and BCOR in synovial sarcomas for the identification of three risk groups and their prognostic outcomes: a study of 52 patients. Int J Mol Sci. 2024; 25 (14): 7615. DOI: 10.3390/ijms25147615.
  15. Recine F, Piciucchi S, De Vincenzo F, et al. Clinical and translational implications of immunotherapy in soft tissue and bone sarcomas. Front Immunol. 2024; 15: 1378398. DOI: 10.3389/fimmu.2024.1378398.
  16. Subramanian A, Caswell DR, Wang H, et al. Sarcoma microenvironment cell states and ecosystems are associated with prognosis and predict response to immunotherapy. Nat Cancer. 2024; 5 (4): 642–58. DOI: 10.1038/s43018-024-00743-y.
  17. West PW, Bulfone-Paus S. Mast cell tissue heterogeneity and specificity of immune cell recruitment. Front Immunol. 2022; 13: 932090. DOI: 10.3389/fimmu.2022.932090.
  18. Spalato-Ceruso M, Valverde P, Italiano A. New strategies in soft tissue sarcoma treatment. J Hematol Oncol. 2024; 17 (1): 76. DOI: 10.1186/s13045-024-01580-3.
  19. Lichterman JN, Reddy SM. Mast Cells: A New Frontier for Cancer Immunotherapy. Cells. 2021; 10 (6): 1270. DOI: 10.3390/cells10061270.
  20. Ribatti D. New insights into the role of mast cells as a therapeutic target in cancer through the blockade of immune checkpoint inhibitors. Front Med (Lausanne). 2024; 11: 1373230. DOI: 10.3389/fmed.2024.1373230.