Parkinson’s disease (PD) is a neurodegenerative multisystem disorder characterized by pathologic α-synuclein aggregation affecting, among other things, vagal fibers. The aim of this study was to investigate the cross-sectional area (CSA) of the vagus nerve (VN) in patients with PD using ultrasound imaging. The study was conducted in 32 patients with PD (15 men and 17 women; mean age 58 ± 10 years) and 32 healthy controls comparable with the main group in terms of sex and age. All study participants underwent ultrasound examination of the VN using a high-resolution transducer. Left VN CSA was significantly smaller in patients with PD than in the control group (1.78 ± 0.52 mm2 vs 2.11 ± 0.41 mm2; р = 0.007). A similar result was obtained for right VN CSA at the trend level. ROC analysis demonstrated that the threshold CSA value of < 2.10 mm2 for the left VN has low diagnostic sensivity (59%) for VN atrophy in patients with PD. Right VN CSA was significantly larger than left VN CSA in both groups (p < 0.001). The analysis of the PD group did not reveal any associations between VN CSA and age, duration and stage of the disease, motor (UPDRS III) and non-motor (NMSQ) scores. Patients with akinetic-rigid form of PD had smaller left VN CSA than patients with the mixed form of the disease (р < 0.05). A moderate inverse correlation was established between left VN CSA and the area of substantia nigra hyperechogenicity on both sides (р < 0.04); for the right VN a similar correlation was established at the trend level. High-resolution ultrasound of patients with PD demonstrated atrophy of the VN and the association of VN CSA with the clinical form of the disease and the ultrasound features of the substantia nigra.
VIEWS 3870
It is assumed that dysfunction of tanycytes could be one of the components of pathogenesis of both Alzheimer disease and type 2 diabetes mellitus. The study was aimed to assess alterations in the tanycyte morphology in the Alzheimer disease model. The 3 mg/kg streptozotocin dose was injected in the lateral ventricles of Wistar rats in order to model the Alzheimer disease. Alterations in hypothalamic tanycytes were assessed 2 weeks, 4 weeks, 3 months and 6 months after administration of the toxin. Immunohistochemistry was used to identify the protein markers of tanycytes (vimentin, nestin), astrocytes (GFAP, glutamine synthetase) and neurons (HuC/D), as well as to assess cell proliferation (with the use of Ki67 protein) and mitochondrial alterations (mitochondrial complex IV, PGC1a). Administration of streptozotocin lead to β-amyloid accumulation in hypothalamus and ventricular enlargement (p < 0.001). Streptozotocin damaged both α1/α2 tanycytes and β1 tanycytes. The intensity of vimentin staining in α1/α2 tanycytes decreased by week 4 (p = 0.003), and in β1 tanycytes it decreased in three months (p < 0.001). The same trend was observed for nestin. The number of Ki67+ nuclei decreased (p < 0.05), and the expression of proteins associated with mitochondria changed. The density of hypothalamic tanycytes decreased by week 4 after administration of the toxin. Moreover, astrocyte activation was revealed. However, no prominent damage to both astrocytes and neurons was observed within four weeks after administration of streptozotocin. The revealed high tanycyte vulnerability to streptozotocin is in line with the hypothesis of the role of damage to hypothalamic structures in both local and systemic metabolic disorders occurring in the Alzheimer disease models.
VIEWS 3233
The marine polychaete Chaetopterus variopedatus (Renier) (family Chaetopteridae) is a cosmopolitan species complex, consisting of distinct populations/ subspecies. The worms release glowing (460 nm) clouds of mucus when disturbed, and their parapodia often glow brightly. Currently, it is still unclear how exactly the bioluminescence system of these polychaetes functions. It has been previously assumed that the C. variopedatus luciferase may be used for detection of ferroptosis, the recently explored pathway of programmed cell death, resulting from accumulation of the ferrous ions. This study was aimed to extract and characterize the C. variopedatus luciferases, as well as to compare luciferases obtained from C. variopedatus of different populations. When extracting the enzyme responsible for bioluminescence from the frozen samples of Brazilian C. variopedatus using the improved method, two active luciferases, L1 and L2, were obtained. We assumed that one of the listed above luciferases was responsible for luminescence of the mucus and the other luciferase was responsible for luminescence in parapodia, and used the method for the distinct samples of mucus and parapodia of the living Far Eastern C. variopedatus. However, mucus of the latter turned out to be non-glowing. It is shown that luciferase L2 is responsible for luminescence in the parapodia of the C. variopedatus polychaete, since this luciferase has been found in the total biomass of Brazilian polychaetes and parapodia of Far Eastern polychaetes. Luminescence of the Brazilian C. variopedatus mucus is attributed to the functioning of luciferase L1, which is lacking in the mucus of the Far Eastern subspecies. The range of luciferase isoforms in polychaetes C. variopedatus depends on the place of origin.
VIEWS 3409
As a rule, esophageal adenocarcinoma develops in the lower esophagus. Life expectancy and survival rates depend on the cancer stage and the general health of the patient. Chemoradiotherapy is the most successful treatment approach to this type of cancer. The choice of optimal radiation doses for achieving the best possible therapeutic effect is still a challenge. The aim of this paper was to study effective radiation doses and assess response of human esophageal adenocarcinoma to radiation using a PDX model. The study was conducted in female Balb/c nude mice (n = 25). Fragments of the donor tumor were implanted into the cervical esophagus of immunodeficient mice. Effects of radiation on the obtained orthotopic xenografts were studied after each of 3 irradiation sessions (4, 6, 8, and 10 Gy in each of the experimental groups, respectively). First-passage xenografts reproduced the morphology of the donor tumor. The mean tumor volume differed significantly between the control group and the experimental groups exposed to 6, 8 or 10 Gy (р ≤ 0.01) after each irradiation session. Tumor growth delay was significant after exposure to the total dose of 18 Gy. The further radiation dose increase was ineffective. The reduction of tumor volume in the xenografts was correlated to the increase in the one-time radiation dose. The total dose over 18 Gy produced a detrimental effect on the hematopoietic system and blood biochemistry of the experimental mice.
VIEWS 3012