To understand how vulnerable are a society, an economy and a state in the face of a biohazard, one should attempt to identify any potential holes in the national biosafety system, such as the lack of important components or technologies for biological monitoring and the inadequacy of existing analytical methods used to prevent or counteract biogenic threats. In Russia, biological monitoring is quite advanced. However, the agencies that ensure proper functioning of its components lack collaboration and do not form a well-coordinated network. Each of such agencies alone cannot provide comprehensive information on the subject. In the Russian Federation, there are at least 4 state-funded programs that collect epidemiological data and are quite efficient in performing the narrow task of monitoring infections. But because there is no central database where epidemiological data can be channeled and subsequently shared, these agencies do not complete each other. This leaves the Russian society, economy and state vulnerable to biogenic threats. We need an adequately organized, modern, fully functional and effective system for monitoring biohazards that will serve as a basis for the national biosafety system and also a tool for the identification and elimination of its weaknesses.
VIEWS 5585
The editing of the CCR5 gene in the CD4+ T cell genome is an effective way of preventing HIV-1 proliferation. Very similar strategies can be used to protect the fetus of an HIV-infected female showing a weak response to antiretroviral therapy. Inducing the “natural” CCR5delta32 mutation in a zygote may guard the fetus against HIV infection both in utero and at birth. In this study, we optimize the CRISPR-Cas9 system to induce a homozygous 32-nt deletion similar to the naturally occurring CCR5delta32 allele in the human zygote at the S-phase. Edits were done in the abnormal tripronuclear zygotes unsuitable for IVF. Sixteen tripronuclear zygotes in the S-phase obtained from WT CCR5 donors were injected with an original CRISPR-Cas9 system designed by the authors. Upon injection, the zygotes were transferred into the Blastocyst (COOK) embryo culture medium and cultured for 5 days in a CO2 incubator until blastocysts were formed (approximately 250 cells). Eight zygotes that successfully developed into blastocysts were PCR-genotyped to analyze the efficacy of genome editing. Of 16 zygotes injected with CRISPR-Cas9, only 8 reached the blastocyst stage. PCR genotyping revealed the absence of the initial WT CCR5 variant in 5 of 8 blastocysts (100% CCR5delta32 homozygous). Two had about 3% and one about 20% of WT CCR5 mosaicism. This leads us to conclude that the efficacy of the proposed CRISPR-Cas9 system for the induction of the CCR5delta32 mutation in human embryos is very high producing more than 50% of completely modified embryos.
VIEWS 15876
Mathematical modeling of pharmacokinetic (PK) and pharmacodynamic (PD) parameters essential for establishing correct dosing regimens is an alternative to pharmacokinetic studies (PKS) adopted in the clinical setting. The aim of this work was to compare the values of PK parameters for vancomycin obtained in an actual PKS and through MM in postoperative patients with kidney injury. Our prospective study included 61 patients (47 males and 14 females aged 60.59 ± 12.23 years). During PKS, drug concentrations at steady state Сtrough and Cpeak were measured by high-performance liquid chromatography followed by the calculation of the area under the plasma concentration-time curve AUC24. For mathematical modeling, a single-compartment model was employed; PK parameters were estimated using R 3.4.0. The values of Ctrough measured 48 h after the onset of antibiotic therapy during PKS were significantly lower than those predicted by MM (р = 0.004). In a group of patients with acute kidney injury (AKI), AUC24 measured at the end of treatment was significantly higher than its value predicted by MM (р = 0.011). The probability of achieving the target AUC24 to MIC ratio of over 400 μg•h /ml is higher in the group of patients with Ctrough = 10–15 μg /ml. Our findings confirm that the use of MM in postoperative patients with renal dysfunction is limited and therapeutic drug monitoring should be used instead.
VIEWS 5138
Testing the surrounding environment for the presence of biogenic aerosols is crucial in ensuring its safety for the population. It is often necessary to collect aerosol samples from large areas in short time, which demands excellent particle collection efficiency, a sufficient incoming air flow rate and a capacity to maintain the viability of the collected samples. Below we present the aerosol sampler with a high volumetric flow rate based on a two-stage particle concentration algorithm and consisting of a virtual impactor and a cyclone concentrator with a recirculating liquid phase. We provide all necessary calculations and an algorithm for modeling impactor parameters. The sampler was tested using dry and liquid formulations dispersed into the particles of 0.5 to 5 μm in diameter. We demonstrate that at volumetric flow rates over 4,000 l/min efficiency of particle collection into the liquid phase at a volume of 10 ml makes over 20% of the total aerosol mass and at volumetric flow rates over 300 l/min this value is over 60%. The proposed device maintains viability of the collected microorganisms. The sampler is portable, with flexible settings for sampling and cleaning, and can be controlled remotely over the network.
VIEWS 5654