REVIEW

Brain-computer interface: the future in the present

Levitskaya OS1, Lebedev MA2
About authors

1 Cyber Myonics, Moscow, Russia

2 Department of Neurobiology,
Duke University, Durham, North Carolina, USA

Correspondence should be addressed: Olga Levitskaya
ul. Marshala Biryuzova, d. 30, kv. 45, Moscow, Russia, 123060; ur.liam@stivel_ailo

Received: 2016-03-11 Accepted: 2016-03-25 Published online: 2017-01-05
|
  1. Lebedev MA, Nicolelis MA. Brain-machine interfaces: past, present and future. Trends Neurosci. 2006 Sep; 29 (9): 536–46. Epub 2006 Jul 21.
  2. Nicolelis MA, Lebedev MA. Principles of neural ensemble physiology underlying the operation of brain-machine interfaces. Nat Rev Neurosci. 2009 Jul; 10 (7): 530–40.
  3. Schwartz AB, Cui XT, Weber DJ, Moran DW. Brain-controlled interfaces: movement restoration with neural prosthetics. Neuron. 2006 Oct 5; 52 (1): 205–20.
  4. McFarland DJ, Krusienski DJ, Wolpaw JR. Brain-computer interface signal processing at the Wadsworth Center: mu and sensorimotor beta rhythms. Prog Brain Res. 2006; 159: 411–9.
  5. Hatsopoulos NG, Donoghue JP. The science of neural interface systems. Annu Rev Neurosci. 2009; 32: 249–66.
  6. Bouton CE, Shaikhouni A, Annetta NV, Bockbrader MA, Friedenberg DA, Nielson DM, et al. Restoring cortical control of functional movement in a human with quadriplegia. Nature. 2016 Apr 13. DOI: 10.1038/nature17435.
  7. Collinger JL, Wodlinger B, Downey JE, Wang W, Tyler-Kabara EC, Weber DJ, et al. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet. 2013 Feb 16; 381 (9886): 557–64.
  8. Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature. 2006 Jul 13; 442 (7099): 164–71.
  9. Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, et al. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature. 2012 May 16; 485 (7398): 372–5.
  10. Tangermann M, Krauledat M, Grzeska K, Sagebaum M, Blankertz B, Vidaurre C, Müller KR. Playing pinball with non-invasive BCI. In: Koller D, Schuurmans D, Bengio Y, editors. Advances in Neural Information Processing Systems 21. Neural Information Processing Systems; 2008 Dec 8–11; Vancouver and Whistler, BC, Canada. Cambridge, MA: MIT Press; 2009. p. 1641–8.
  11. Lin CT, Chang CJ, Lin BS, Hung SH, Chao CF, Wang IJ. A real-time wireless brain–computer interface system for drowsiness detection. IEEE Trans Biomed Circuits Syst. 2010 Aug; 4 (4): 214–22.
  12. Virtual'naya real'nost' i kotiki na khakatone Microsoft i Skolkovo [Internet]. Habrahabr. 2015 Jan. Available from: https://habrahabr.ru/company/microsoft/blog/275837/.
  13. Shannon RV. Advances in auditory prostheses. Curr Opin Neurol. 2012 Feb; 25 (1): 61–6.
  14. Wilson BS, Dorman MF. Cochlear implants: a remarkable past and a brilliant future. Hear Res. 2008 Aug; 242 (1–2): 3–21.
  15. Lilly JC. Distribution of 'motor' functions in the cerebral cortex in the conscious, intact monkey. Science. 1956; 124: 937.
  16. Evarts EV. Motor cortex reflexes associated with learned movement. Science. 1973; 179: 501–3.
  17. O'Doherty JE, Lebedev MA, Ifft PJ, Zhuang KZ, Shokur S, Bleuler H, Nicolelis MA. Active tactile exploration using a brain-machine-brain interface. Nature. 2011 Oct 5; 479 (7372): 228–31.
  18. Lilly JC. Instantaneous relations between the activities of closely spaced zones on the cerebral cortex; electrical figures during responses and spontaneous activity. Am J Physiol. 1954; 176: 493–504.
  19. Dennett DC. Consciousness explained. London, UK: Penguin UK; 1993. 528 p.
  20. Frank K. Some approaches to the technical problem of chronic excitation of peripheral nerve. Ann Otol Rhinol Laryngol. 1968 Aug; 77 (4): 761–71.
  21. Humphrey DR, Schmidt EM, Thompson WD. Predicting measures of motor performance from multiple cortical spike trains. Science. 1970 Nov 13; 170 (3959): 758–62.
  22. Schmidt EM. Single neuron recording from motor cortex as a possible source of signals for control of external devices. Ann Biomed Eng. 1980; 8 (4–6): 339–49.
  23. Fetz EE. Operant conditioning of cortical unit activity. Science. 1969 Feb 28; 163 (3870): 955–8.
  24. Brindley GS, Lewin WS. The sensations produced by electrical stimulation of the visual cortex. J. Physiol. 1968 May; 196 (2): 479–93.
  25. Dobelle WH, Mladejovsky MG, Girvin JP. Artifical vision for the blind: electrical stimulation of visual cortex offers hope for a functional prosthesis. Science. 1974 Feb 1; 183 (4123): 440–4.
  26. Chapin JK, Moxon KA, Markowitz RS, Nicolelis MA. Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nat Neurosci. 1999 Jul; 2 (7): 664–70.
  27. Wessberg J, Stambaugh CR, Kralik JD, Beck PD, Laubach M, Chapin JK, et al. Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature. 2000 Nov 16; 408 (6810): 361–5.
  28. Carmena JM, Lebedev MA, Crist RE, O'Doherty JE, Santucci DM, Dimitrov DF, et al. Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biol. 2003; 1 (2): e42. DOI:10.1371/journal.pbio.0000042.
  29. Lebedev MA, Carmena JM, O'Doherty JE, Zacksenhouse M, Henriquez CS, Principe JC, Nicolelis MA. Cortical ensemble adaptation to represent velocity of an artificial actuator controlled by a brain-machine interface. J Neurosci. 2005 May 11; 25 (19): 4681–93.
  30. Fitzsimmons NA, Lebedev MA, Peikon ID, Nicolelis MA. Extracting kinematic parameters for monkey bipedal walking from cortical neuronal ensemble activity. Front Integr Neurosci. 2009 Mar 9; 3:3. DOI: 10.3389/neuro.07.003.2009.
  31. Ifft PJ, Shokur S, Li Z, Lebedev MA, Nicolelis MA. A brain-machine interface enables bimanual arm movements in monkeys. Sci Transl Med. 2013 Nov 6; 5 (210): 210ra154.
  32. Kennedy PR, Bakay RA. Restoration of neural output from a paralyzed patient by a direct brain connection. Neuroreport. 1998 Jun 1; 9 (8): 1707–11.
  33. Taylor DM, Tillery SI, Schwartz AB. Direct cortical control of 3D neuroprosthetic devices. Science. 2002 Jun 7; 296 (5574): 1829–32.
  34. Mountcastle VB. The sensory hand: neural mechanisms of somatic sensation. Cambridge, MA: Harvard University Press: 2005. 640 p.
  35. Hubel D.H., Wiesel T.N. (2005). Brain and visual perception: the story of a 25-year collaboration. 744 pp. Oxford University Press.
  36. Wise SP. The primate premotor cortex: past, present, and preparatory. Annu Rev Neurosci. 1985; 8: 1–19.
  37. Kalaska JF, Scott SH, Cisek P, Sergio LE. Cortical control of reaching movements. Curr Opin Neurobiol. 1997 Dec; 7 (6): 849–59.
  38. Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT. On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J Neurosci. 1982 Nov; 2 (11): 1527–37.
  39. Georgopoulos AP, Lurito JT, Petrides M, Schwartz AB, Massey JT. Mental rotation of the neuronal population vector. Science. 1989 Jan 13; 243 (4888): 234–6.
  40. Moritz CT, Perlmutter SI, Fetz EE. Direct control of paralysed muscles by cortical neurons. Nature. 2008 Dec 4; 456 (7222): 639–42.
  41. Quiroga RQ, Reddy L, Kreiman G, Koch C, Fried I. Invariant visual representation by single neurons in the human brain. Nature. 2005 Jun 23; 435 (7045): 1102–7.
  42. Haykin S. Adaptive Filter Theory. 4th ed. Upper Saddle River, New Jersey: Prentice Hall; 2002. 936 p.
  43. Sussillo D, Nuyujukian P, Fan JM, Kao JC, Stavisky SD, Ryu S, Shenoy K. A recurrent neural network for closed-loop intracortical brain-machine interface decoders. J Neural Eng. 2012 Apr; 9 (2): 026027. DOI: 10.1088/1741-2560/9/2/026027.
  44. Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchoubey B, Kübler A, et al. A spelling device for the paralysed. Nature. 1999 Mar 25; 398 (6725): 297–8.
  45. Birbaumer N, Murguialday AR, Cohen L. Brain-computer interface in paralysis. Curr Opin Neurol. 2008 Dec; 21 (6): 634–8.
  46. Sherrington CS. The integrative action of the nervous system. New York: Charles Scribner's Sons; 1906. 445 p.
  47. Guertin PA. The mammalian central pattern generator for locomotion. Brain Res Rev. 2009 Dec 11; 62 (1): 45–56.
  48. Cordo PJ, Gurfinkel VS. Motor coordination can be fully understood only by studying complex movements. Prog Brain Res. 2004; 143: 29–38.
  49. Head H, Holmes G. Sensory disturbances from cerebral lesions. Brain. 1911 Nov 1; 34 (2–3): 102–254.
  50. Kawato M. Internal models for motor control and trajectory planning. Curr Opin Neurobiol. 1999 Dec 1; 9 (6): 718–27.
  51. Feldman AG, Ostry DJ, Levin MF, Gribble PL, Mitnitski AB. Recent tests of the equilibrium-point hypothesis (lambda model). Motor Control. 1998 Jul; 2 (3): 189–205.
  52. Velliste M, Perel S, Spalding MC, Whitford AS, Schwartz AB. Cortical control of a prosthetic arm for self-feeding. Nature. 2008 Jun 19; 453 (7198): 1098–101.
  53. Levitskaya OS, Krylov NV, Kapyrin NI. Kostyum funktsional'noy elektrostimulyatsii dlya neiroreabilitatsii s primeneniem virtual'noy real'nosti [Internet]. Skolkovo Robotics sk-news. 2014 Mar [cited 2016 Feb].
  54. Pfurtscheller G, Müller GR, Pfurtscheller J, Gerner HJ, Rupp R. 'Thought'-control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia. Neurosci. Lett. 2003 Nov 6; 351 (1): 33–6.
  55. Ethier C, Oby ER, Bauman MJ, Miller LE. Restoration of grasp following paralysis through brain-controlled stimulation of muscles. Nature. 2012 May 17; 485 (7398): 368–71.
  56. Pohlmeyer EA, Oby ER, Perreault EJ, Solla SA, Kilgore KL, Kirsch RF, Miller LE. Toward the restoration of hand use to a paralyzed monkey: brain-controlled functional electrical stimulation of forearm muscles. PLoS One. 2009 Jun 15; 4 (6): e5924.
  57. Hick C, Hick A. Intensivkurs Physiologie. 5th ed. München–Jena: Urban&Fischer; 2006. 434 p.
  58. Cheron G, Duvinage M, De Saedeleer C, Castermans T, Bengoetxea A, Petieau M,et al. From spinal central pattern generators to cortical network: integrated BCI for walking rehabilitation. Neural Plast. 2012; 2012: 375148.
  59. Presacco A, Forrester LW, Contreras-Vidal JL. Decoding intra-limb and inter-limb kinematics during treadmill walking from scalp electroencephalographic (EEG) signals. IEEE Trans Neural Syst Rehabil Eng. 2012 Mar; 20 (2): 212–9.
  60. Exoatlet.ru [Internet]. Moscow: ExoAtlet LLC; c2014-2015. Available from: http://www.exoatlet.ru.
  61. Courtine G, Gerasimenko Y, van den Brand R, Yew A, Musienko P, Zhong H, et al. Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat Neurosci. 2009 Oct 1; 12 (10): 1333–42.
  62. Nicolelis MA. Beyond Boundaries: The New Neuroscience of Connecting Brains with Machines — and How It Will Change Our Lives. New York: Times Books; 2011. 354 p.
  63. Iriki A, Tanaka M, Iwamura Y. Coding of modified body schema during tool use by macaque postcentral neurones. Neuroreport. 1996 Oct; 7 (14): 2325–30.
  64. Zacksenhouse M, Lebedev MA, Carmena JM, O'Doherty JE, Henriquez C, Nicolelis MA. Cortical modulations increase in early sessions with brain-machine interface. PLoS One. 2011 Jul 18; 2 (7): e619.
  65. Galán F, Nuttin M, Lew E, Ferrez PW, Vanacker G, Philips J, Millán JR. A brain-actuated wheelchair: asynchronous and non-invasive brain-computer interfaces for continuous control of robots. Clin Neurophysiol. 2008 Sep 13; 119 (9): 2159–69.
  66. Müller-Putz GR, Gernot R, Pfurtscheller G. Control of an electrical prosthesis with an SSVEP-based BCI. IEEE Trans Biomed Eng. 2008 Jan; 55 (1): 361–4.
  67. Nicolas-Alonso LF, Gomez-Gil J. Brain computer interfaces, a review. Sensors (Basel). 2012; 12 (2): 1211–79.
  68. Sellers EW, Vaughan TM, Wolpaw JR. A brain-computer interface for long-term independent home use. Amyotroph Lateral Scler. 2010 Oct; 11 (5): 449–55.
  69. Wolpaw JR, McFarland DJ. Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc Natl Acad Sci U S A. 2008 Dec 21;101 (51): 17849–54.
  70. Vialatte FB, Maurice M, Dauwels J, Cichocki A. Steady-state visually evoked potentials: focus on essential paradigms and future perspectives. Prog Neurobiol. 2010 Apr; 90 (4): 418–38.
  71. Farwell LA, Donchin E. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol. 1988; 70 (6): 510–23.
  72. Mellinger J, Schalk G, Braun C, Preissl H, Rosenstiel W, Birbaumer N, Kübler A. An MEG-based brain–computer interface (BCI). Neuroimage. 2007 Jul 1; 36 (3): 581–93.
  73. Sitaram R, Caria A, Birbaumer N. Hemodynamic brain-computer interfaces for communication and rehabilitation. Neural Netw. 2009 Nov; 22 (9): 1320–8.
  74. Barton JJ. Disorder of higher visual function. Curr Opin Neurol. 2009 Feb; 24 (1): 1–5.
  75. Romo R, Hernández A, Zainos A, Brody CD, Lemus L. Sensing without touching: psychophysical performance based on cortical microstimulation. Neuron. 2000 Apr; 26 (1): 273–78.
  76. Fitzsimmons NA, Drake W, Hanson TL, Lebedev MA, Nicolelis MA. Primate reaching cued by multichannel spatiotemporal cortical microstimulation. J Neurosci. 2007 May 23; 27 (21): 5593–602.
  77. Zhang F, Aravanis AM, Adamantidis A, de Lecea L, Deisseroth K. Circuit-breakers: optical technologies for probing neural signals and systems. Nat Rev Neurosci. 2007 Aug; 8 (8): 577–81. Erratum in: Nat Rev Nuerosci. 2007 Sep; 8 (9): 732.
  78. Jones LA. Tactile communication systems optimizing the display of information. Prog Brain Res. 2011; 192:113–28.
  79. Fernandes RA, Diniz B, Ribeiro R, Humayun M. Artificial vision through neuronal stimulation. Neurosci Lett. 2012 Jun 25; 519 (2): 122–8.
  80. O'Doherty JE, Lebedev M, Hanson TL, Fitzsimmons N, Nicolelis MA. A brain-machine interface instructed by direct intracortical microstimulation. Front Integr Neurosci. 2009 Sep 1; 3: 20.
  81. Ramakrishnan A, Ifft PJ, Pais-Vieira M, Byun YW, Zhuang KZ, Lebedev MA, Nikolelis MA. Computing arm movements with a monkey brained. Sci Rep. 2015 Jul 9; 5: 10767.