REVIEW

Looking inside man: medical imaging

Osipov LV1, Dolgushin MB2, Mikhaylov AI2, Epel B3, Rumyantsev KA4,5, Turoverov KK4, Verkhusha VV5, Kulikova EYu6
About authors

1 IzoMed Ltd., Moscow, Russia

2 Department of Positron Emission Tomography,
N. N. Blokhin Russian Cancer Research Center, Moscow, Russia

3 Department of Radiation and Cellular Oncology,
University of Chicago, Chicago, USA

4 Laboratory of the Structural Dynamics, Stability and Folding of Proteins,
Institute of Cytology of Russian Academy of Sciences, Saint-Petersburg, Russia

5 Department of Anatomy and Structural Biology,
Albert Einstein College of Medicine, New York, USA

6 Pirogov Russian National Research Medical University, Moscow, Russia

Correspondence should be addressed: Elena Kulikova
ul. Ostrovityanova, d. 1, Moscow, Russia, 117997; moc.liamg@avokiluk.uy.anele

Received: 2016-08-15 Accepted: 2016-08-20 Published online: 2017-01-05
|
  1. Osipov LV. Ul'trazvukovye diagnosticheskie pribory: rezhimy, metody i tekhnologii. Moscow: Izomed; 2011. 316 p. Russian.
  2. Osipov LV. Tekhnologii elastografii v ul'trazvukovoy diagnostike. Obzor. Meditsinskiy alfavit: Diagnosticheskaya radiologiya i onkoterapiya. 2013; 3–4: 5–22. Russian.
  3. Medimaging International staff writers. Poll’s Findings Reveal Adaptable Imaging Systems to Transform Ultrasound Imaging. MedImaging.net. 2013 Sep 30.
  4. Tai A. XDclear Transducer Technology [Internet]. GE Healthcare; c2016– [cited: 2016 Aug]. Available from: http://www3.gehealthcare.com/en.
  5. Seeram E. Computed tomography: physical principles, clinical applications, and quality control. 4th ed. Saunders; 2015. 576 p.
  6. Sun Z. Coronary Virtual Intravascular Endoscopy. In: Tintoiu IC, Underwood MJ, Cook SP, Kitabata H, Abbas A, editors. Coronary Graft Failure. Springer International Publishing; 2016. p. 555–70.
  7. Schuhbaeck A, Achenbach S, Layritz C, Eisentopf J, Hecker F, Pflederer T, et al. Image quality of ultra-low radiation exposure coronary CT angiography with an effective dose <0.1 mSv using high-pitch spiral acquisition and raw data-based iterative reconstruction. Eur Radiol. 2013; 23 (3): 597–606.
  8. Bammer R. MR and CT Perfusion and Pharmacokinetic Imaging: Clinical Applications and Theory. Lippincott Williams and Wilkins; 2016. 1296 p.
  9. Carrascosa PM, Garcia MJ, Cury RC, Leipsic JA. Dual-Energy CT. In: Carrascosa PM, Cury RC, Garcia MJ, Leipsic JA, editors. Dual-Energy CT in Cardiovascular Imaging. Springer International Publishing; 2015. p. 3–9.
  10. Patino M, Prochowski A, Agrawal MD, Simeone FJ, Gupta R, Hahn PF, et al. Material Separation Using Dual-Energy CT: Current and Emerging Applications. Radiographics. 2016; 36 (4): 1087–105.
  11. Fritz J, Henes JC, Fuld MK, Fishman EK, Horger MS. Dual-Energy Computed Tomography of the Knee, Ankle, and Foot: Noninvasive Diagnosis of Gout and Quantification of Monosodium Urate in Tendons and Ligaments. Semin Musculoskelet Radiol. 2016; 20 (1): 130–6.
  12. Hashemi RH, Bradley WG, Lisanti CJ. MRI: The Basics. 3d ed. Lippincott Williams and Wilkins; 2012. 400 p.
  13. Westbrook C, Roth CK, Talbot J. MRI in Practice. 4th ed. John Wiley and Sons; 2011. 456 p.
  14. Taouli B, Beer AJ, Chenevert T, Collins D, Lehman C, Matos C, et al. Diffusion‐weighted imaging outside the brain: Consensus statement from an ISMRM‐sponsored workshop. J Magn Reson Imaging. 2016; 44 (3): 521–40.
  15. Leote J, Nunes R, Cerqueira L, Ferreira HA. Corticospinal MRI tractography in space-occupying brain lesions by diffusion tensor and kurtosis imaging methods. EJNMMI phys. 2015; 2 (Suppl 1): A82.
  16. Pinker K, Stadlbauer A, Bogner W, Gruber S, Helbich TH. Molecular imaging of cancer: MR spectroscopy and beyond. Eur J Radiol. 2012; 81 (3): 566–77.
  17. Rosen Y, Lenkinski RE. Recent advances in magnetic resonance neurospectroscopy. Neurotherapeutics. 2007; 4 (3): 330–45.
  18. Mabray MC, Barajas RF Jr, Cha S. Modern Brain Tumor Imaging. Brain Tumor Res Treat. 2015; 3 (1): 8–23.
  19. Schulz J, Boyacioğlu R, Norris DG. Multiband multislab 3D time‐of‐flight magnetic resonance angiography for reduced acquisition time and improved sensitivity. Magn Reson Med. 2016; 75 (4): 1662–8.
  20. Griffith B, Jain R. Perfusion imaging in neuro-oncology: basic techniques and clinical applications. Radiol Clin North Am. 2015; 53 (3): 497–511.
  21. Uludağ K, Uğurbil K, Berliner L, editors. FMRI: From Nuclear Spins to Brain Functions. Springer US; 2015. 929 p.
  22. Weissleder R. Molecular imaging in cancer. Science. 2006; 312 (5777): 1168–71.
  23. Part 4: FDA-Approved PET/CT Tracers. In: Savir-Baruch B, Barron BJ. RadTool Nuclear Medicine Flash Facts. Springer International Publishing; 2016. 181–92.
  24. Buchbender C, Heusner TA, Lauenstein TC, Bokisch A, Antoch G. Oncologic PET/MRI, part 2: bone tumors, soft-tissue tumors, melanoma, and lymphoma. J Nucl Med. 2012; 53 (8): 1244–52.
  25. Tripathi RP. Recent trends in Molecular Imaging: PET/CT in Neurology. Ann Natl Acad Med Sci (India). 2014; 50 (1–2): 34–44.
  26. Dolgushin MB, Odzharova AA, Tulin PE, Vikhrova NB, Nevzorov DI, Menkov MA, et al. Use of 18F-choline PET in Cerebral Gliomas. Meditsinskaya vizualizatsiya. 2014; 3: 73–83. Russian.
  27. Lebron L, Greenspan D, Pandit-Taskar N. PET imaging of breast cancer: role in patient management. PET clin. 2015; 10 (2): 159–95.
  28. Kurihara H, Shimizu C, Miyakita Y, Yoshida M, Hamada A, Kanayama Y, et al. Molecular imaging using PET for breast cancer. Breast Cancer. 2016; 23 (1): 24–32.
  29. Mikhaylov AI, Tulin PE. Dvukhetapnaya PET/KT s 18F-ftorkholinom pri biokhimicheskikh retsidivakh raka predstatel'noy zhelezy. Evraziyskiy onkologicheskiy zhurnal. 2016; 4 (2): 388. Russian.
  30. Dolgushin MB, Odzharova AA, Mikhailov AI, Shiryaev SV, Tulin PE, Nevzorov DI, et al. Dual-stage 18F-fluorocholine PET/CT scanning for biochemical recurrences of prostate cancer. Cancer Urology.. 2015; 11 (2): 46–54. Russian.
  31. Prosper A, Jadvar H. A Guided Tour of PET in Prostate Cancer. J Nucl Med. 2016; 57 (Suppl 2): 1319.
  32. Barwick T. PET/CT imaging in prostate cancer. Cancer Imaging. 2015; 15 (Suppl 1): O15.
  33. Ambrosini V, et al. PET/CT in Neuroendocrine Tumours. In: Ambrosini V, Fanti S, editors. PET/CT in Neuroendocrine Tumors. Springer International Publishing; 2016. p. 45–53.
  34. Dolgushin MB, Shiryaev SV, Odzharova AA, et al. PET-diagnostika v onkologii. Vestnik Moskovskogo onkologicheskogo obshchestva. 2015; ?: 63–74. Russian.
  35. Jambor I, Kuisma A, Ramadan S, Huovinen R, Sandell M, Kajander S, et al. Prospective evaluation of planar bone scintigraphy, SPECT, SPECT/CT, 18F-NaF PET/CT and whole body 1.5 T MRI, including DWI, for the detection of bone metastases in high risk breast and prostate cancer patients: SKELETA clinical trial. Acta Oncol. 2016; 55 (1): 59–67.
  36. Epel B, Halpern H. Electron paramagnetic resonance oxygen imaging in vivo. In: Gilbert BC, Murphy DM, Chechik V, editors. Electron Paramagnetic Resonance. Vol. 23. RSC Publishing; 2013. p. 180–208.
  37. Matsumoto K, English S, Yoo J, Yamada K, Devasaharyam N, Cook JA, et al. Pharmacokinetics of a triarylmethyl-type paramagnetic spin probe used in EPR oximetry. Magnet Reson Med. 2004; 52 (4): 885–92.
  38. Elas M, Bell R, Hleihel D, Barth ED, McFaul C, Haney CR, et al. Electron paramagnetic resonance oxygen image hypoxic fraction plus radiation dose strongly correlates with tumor cure in FSA fibrosarcomas. Int J Radiat Oncol Biol Phys. 2008; 71 (2): 542–9.
  39. Elas M, Magwood JM, Butler B, Li C, Wardak R, Barth ED, et al. EPR Oxygen Images Predict Tumor Control by a 50 % Tumor Control Radiation Dose. Cancer Res. 2013; 73 (17): 5328–35.
  40. Tatum JL, Kelloff GJ, Gillies RJ, Arbeit JM, Brown JM, Chao KS, et al. Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy. Int J Radiat Biol. 2006; 82 (10): 699–757.
  41. Ardenkjaer-Larsen JH, Laursen I, Leunbach I, Ehnholm G, Wistrand LG, Petersson JS, et al. EPR and DNP properties of certain novel single electron contrast agents intended for oximetric imaging. J Magn Reson 1998; 133 (1): 1–12.
  42. Epel B, Maggio C, Pelizzari C, Halpern HJ. Tumor oxygen-guided radiation therapy optimization. In: Oxygen Transport to Tissue XXXIX. Advances in Experimental Medicine and Biology. Springer. [In prep.].
  43. Shcherbakova DM, Verkhusha VV. Near-infrared fluorescent proteins for multicolor in vivo imaging. Nat Methods. 2013; 10 (8): 751–4.
  44. Shcherbakova DM, Baloban M, Pletnev S, Malashkevich VN, Xiao H, Dauter Z, et al. Molecular Basis of Spectral Diversity in Near-Infrared Phytochrome-Based Fluorescent Proteins. Chem Biol. 2015; 22 (11): 1540–51.
  45. Rumyantsev KA, Shcherbakova DM, Zakharova NI, Emelyanov AV, Turoverov KK, Verkhusha VV. Minimal domain of bacterial phytochrome required for chromophore binding and fluorescence. Sci Rep. 2015; 5: 18348.
  46. Piatkevich KD, Subach FV, Verkhusha VV. Far-red light photoactivatable near-infrared fluorescent proteins engineered from a bacterial phytochrome. Nat Commun. 2013; 4: 2153.
  47. Filonov GS, Verkhusha VV. A near-infrared BiFC reporter for in vivo imaging of protein-protein interactions. Chem Biol. 2013; 20 (8): 1078–86.
  48. Tchekanda E, Sivanesan D, Michnick SW. An infrared reporter to detect spatiotemporal dynamics of protein-protein interactions. Nat Methods. 2014; 11 (6): 641–4.
  49. Lu Y, Darne CD, Tan IC, Wu G, Wilganowski N, Robinson H, et al. In vivo imaging of orthotopic prostate cancer with far-red gene reporter fluorescence tomography and in vivo and ex vivo validation. J Biomed Opt. 2013, 18 (10): 101305.
  50. Jiguet-Jiglaire C, Cayol M, Mathieu S, Jeanneau C, Bouvier-Labit C, Ouafik L, et al. Noninvasive near-infrared fluorescent protein-based imaging of tumor progression and metastases in deep organs and intraosseous tissues. J Biomed Opt. 2014, 19 (1): 16019.
  51. Agollah GD, Wu G, Sevick-Muraca EM, Kwon S. In vivo lymphatic imaging of a human inflammatory breast cancer model. J Cancer. 2014; 5 (9): 774–83.
  52. Condeelis J, Weissleder R. In vivo imaging in cancer. Cold Spring Harb Perspect Biol. 2010 Dec; 2 (12): a003848.
  53. Wang Y, Zhou M, Wang X, Qin G, Weintraub NL, Tang Y. Assessing in vitro stem-cell function and tracking engraftment of stem cells in ischaemic hearts by using novel iRFP gene labelling. J Cell Mol Med. 2014; 18 (9): 1889–94.
  54. Tran MT, Tanaka J, Hamada M, Sugiyama Y, Sakaguchi S, Nakamura M, et al. In vivo image analysis using iRFP transgenic mice. Exp Anim. 2014; 63 (3): 311–9.
  55. Fyk-Kolodziej B, Hellmer CB, Ichinose T. Marking cells with infrared fluorescent proteins to preserve photoresponsiveness in the retina. Biotechniques. 2014;, 57 (5): 245–53.
  56. Calvo-Alvarez, E.; Stamatakis, K.; Punzon, C.; Alvarez-Velilla, R.; Tejeria, A.; Escudero-Martinez, J. M.; Perez-Pertejo, Y.; Fresno, M.; Balana-Fouce, R.; Reguera, R. M. Infrared fluorescent imaging as a potent tool for in vitro, ex vivo and in vivo models of visceral leishmaniasis. PLoS Negl Trop Dis. 2015; 9 (3): e0003666.
  57. Yao J, Kaberniuk AA, Li L, Shcherbakova DM, Zhang R, Wang L, et al. Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe. Nat Methods. 2016, 13 (1): 67–73.
  58. Zagoudis J, Fornell D. The Latest in Ultrasound Technology. Diagnostic and Interventional Cardiology [Internet]. 2016 Feb 12. Available from: http://www.dicardiology.com/article/latest-ultrasound-technology.
  59. Kwon HW, Becker AK, Goo JM, Cheon GJ. FDG Whole-Body PET/MRI in Oncology: A Systematic Review. Nucl Med Mol Imaging. Epub 2016 Apr 7.
  60. Vandenberghe S, Marsden PK. PET-MRI: a review of challenges and solutions in the development of integrated multimodality imaging. Phys Med Biol. 2015; 60 (4): R115–54.
  61. Deliolanis NC, Ale A, Morscher S, Burton NC, Schaefer K, Radrich K, et al. Deep-tissue reporter-gene imaging with fluorescence and optoacoustic tomography: a performance overview. Mol Imaging Biol. 2014; 16 (5): 652–60.
  62. Krumholz A, Shcherbakova DM, Xia J, Wang LV, Verkhusha VV. Multicontrast photoacoustic in vivo imaging using near-infrared fluorescent proteins. Sci Rep. 2014; 4: 3939.