ORIGINAL RESEARCH

Observing the dynamics of the NAD+ to NADH ratio in Danio rerio embryo tissues using a genetically encoded biosensor

About authors

1 Laboratory for Molecular Technologies,
Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia

2 Department of Brain-Computer Interfaces, Research Institute for Translational Medicine,
Pirogov Russian National Research Medical University, Moscow, Russia

3 Department of Biochemistry, Faculty of Biology,
Lomonosov Moscow State University, Moscow, Russia

Correspondence should be addressed: Vsevolod Belousov
ul. Miklukho-Maklaya, d. 16/10, Moscow, Russia, 117997; ur.hcbi@vosuoleb

About paper

Funding: this work was supported by the Russian Foundation for Basic Research (Grant 16-34-60175) and the Russian Federation Presidential Grant MK-6339.2016.4. Experiments were partially carried out using the equipment provided by the IBCH сore facility (CKP IBCH, supported by Russian Ministry of Education and Science, grant RFMEFI62117X0018).

Received: 2017-12-05 Accepted: 2017-12-25 Published online: 2018-03-14
|
  1. Langenau DM, Traver D, Ferrando AA, Kutok JL, Aster JC, Kanki JP et al. Myc-induced T cell leukemia in transgenic zebrafish. Science. 2003 Feb 7; 299 (5608): 887–90. DOI: 10.1126/science.1080280.
  2. Chen J, Jette C, Kanki JP, Aster JC, Look AT, Griffin JD. NOTCH1-induced T-cell leukemia in transgenic zebrafish. Leukemia. 2007 Mar; 21 (3): 462–71. DOI: 10.1038/sj.leu.2404546.
  3. Feng H, Stachura DL, White RM, Gutierrez A, Zhang L, Sanda T et al. T-lymphoblastic lymphoma cells express high levels of BCL2, S1P1, and ICAM1, leading to a blockade of tumor cell intravasation. Cancer Cell. 2010 Oct 19; 18 (4): 353–66. DOI: 10.1016/j.ccr.2010.09.009.
  4. Patton EE, Widlund HR, Kutok JL, Kopani KR, Amatruda JF, Murphey RD et al. BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr Biol. 2005 Feb 8; 15 (3): 249–54. DOI: 10.1016/j.cub.2005.01.031.
  5. Santoriello C, Gennaro E, Anelli V, Distel M, Kelly A, Koster RW et al. Kita driven expression of oncogenic HRAS leads to early onset and highly penetrant melanoma in zebrafish. PloS One. 2010 Dec 10; 5 (12): e15170. DOI: 10.1371/journal.pone.0015170.
  6. Bassett DI, Currie PD. The zebrafish as a model for muscular dystrophy and congenital myopathy. Hum Mol Genet. 2003 Oct 15; 12 Spec No 2: R265–70. DOI: 10.1093/hmg/ddg279.
  7. Zang L, Shimada Y, Nishimura N. Development of a novel zebrafish model for type 2 diabetes mellitus. Sci Rep. 2017 May 3; 7 (1): 1461. DOI: 10.1038/s41598-017-01432-w.
  8. Stainier DY, Fouquet B, Chen JN, Warren KS, Weinstein BM, Meiler SE et al. Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development. 1996 Dec; 123: 285–92.
  9. Asnani A, Peterson RT. The zebrafish as a tool to identify novel therapies for human cardiovascular disease. Dis Models Mech. 2014 Jul; 7 (7): 763–7. DOI: 10.1242/dmm.016170.
  10. Chablais F, Veit J, Rainer G, Jazwinska A. The zebrafish heart regenerates after cryoinjury-induced myocardial infarction. BMC Dev Biol. 2011 Apr 7; 11: 21. DOI: 10.1186/1471-213X-11-21.
  11. Morales EE, Wingert RA. Zebrafish as a model of kidney disease. Results Probl Cell Differ. 2017; 60: 55–75. DOI: 10.1007/978-3-319-51436-9_3.
  12. Swanhart LM, Cosentino CC, Diep CQ, Davidson AJ, de Caestecker M, Hukriede NA. Zebrafish kidney development: basic science to translational research. Birth Defects Res C Embryo Today. 2011 Jun; 93 (2): 141–56. DOI: 10.1002/bdrc.20209.
  13. Martin-Jimenez R, Campanella M, Russell C. New zebrafish models of neurodegeneration. Curr Neurol Neurosci Rep. 2015 Jun; 15 (6): 33. DOI: 10.1007/s11910-015-0555-z.
  14. Xi Y, Noble S, Ekker M. Modeling neurodegeneration in zebrafish. Curr Neurol Neurosci Rep. 2011 Jun; 11 (3): 274–82. DOI: 10.1007/s11910-011-0182-2.
  15. Yu X, Li YV. Zebrafish as an alternative model for hypoxic-ischemic brain damage. Int J Physiol Pathophysiol Pharmacol. 2011; 3 (2): 88–96. Epub 2011 Apr 20.
  16. Yu X, Li YV. Zebrafish (Danio rerio) developed as an alternative animal model for focal ischemic stroke. Acta Neurochir Suppl. 2016; 121: 115–9. DOI: 10.1007/978-3-319-18497-5_20.
  17. Zhu JJ, Xu YQ, He JH, Yu HP, Huang CJ, Gao JM et al. Human cardiotoxic drugs delivered by soaking and microinjection induce cardiovascular toxicity in zebrafish. J Appl Toxicol. 2014; 34 (2): 139–48. DOI: 10.1002/jat.2843.
  18. Liang J, Jin W, Li H, Liu H, Huang Y, Shan X, et al. In vivo cardiotoxicity induced by sodium aescinate in zebrafish larvae. Molecules. 2016 Feb 23; 21 (3): 190. DOI: 10.3390/molecules21030190.
  19. Rocha F, Dias J, Engrola S, Gavaia P, Geurden I, Dinis MT et al. Glucose overload in yolk has little effect on the long-term modulation of carbohydrate metabolic genes in zebrafish (Danio rerio). J Exp Biol. 2014 Apr 1; 217 (Pt 7): 1139–49. DOI: 10.1242/jeb.095463.
  20. Cronan MR, Tobin DM. Fit for consumption: zebrafish as a model for tuberculosis. Dis Model Mech. 2014 Jul; 7 (7): 777–84. DOI: 10.1242/dmm.016089.
  21. Mostowy S, Boucontet L, Mazon Moya MJ, Sirianni A, Boudinot P, Hollinshead M et al. The zebrafish as a new model for the in vivo study of Shigella flexneri interaction with phagocytes and bacterial autophagy. PLoS Pathog. 2013; 9 (9): e1003588. DOI: 10.1371/journal.ppat.1003588.
  22. Veneman WJ, Stockhammer OW, de Boer L, Zaat SA, Meijer AH, Spaink HP. A zebrafish high throughput screening system used for Staphylococcus epidermidis infection marker discovery. BMC Genomics. 2013 Apr 15; 14: 255. DOI: 10.1186/1471-2164-14-255.
  23. Yee NS, Kazi AA, Yee RK. Translating discovery in zebrafish pancreatic development to human pancreatic cancer: biomarkers, targets, pathogenesis, and therapeutics. Zebrafish. 2013 Jun; 10 (2): 132–46. DOI: 10.1089/zeb.2012.0817.
  24. Lee HJ, Yang YJ, Jeong S, Lee JD, Choi SY, Jung DW et al. Development of a vestibular schwannoma xenograft zebrafish model for in vivo antitumor drug screening. Laryngoscope. 2016 Dec; 126 (12): E409–E415. DOI: 10.1002/lary.26043.
  25. Bilan DS, Belousov VV. New tools for redox biology: From imaging to manipulation. Free Radic Biol Med. 2017 Aug; 109: 167–88. DOI: 10.1016/freeradbiomed.2016.12.004.
  26. Gauron C, Meda F, Dupont E, Albadri S, Quenech'Du N, Ipendey E et al. Hydrogen peroxide (H2O2) controls axon pathfinding during zebrafish development. Dev Biol. 2016 Jun 15; 414 (2): 133–41. DOI: 10.1016/j.ydbio.2016.05.004.
  27. Niethammer P, Grabher C, Look AT, Mitchison TJ. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature. 2009 Jun 18; 459 (7249): 996–9. DOI: 10.1038/nature08119.
  28. Han P, Zhou XH, Chang N, Xiao CL, Yan S, Ren H et al. Hydrogen peroxide primes heart regeneration with a derepression mechanism. Cell Res. 2014 Sep; 24 (9): 1091–107. DOI: 10.1038/cr.2014.108.
  29. Zhao Y, Hu Q, Cheng F, Su N, Wang A, Zou Y et al. SoNar, a highly responsive NAD+/NADH sensor, allows high-throughput metabolic screening of anti-tumor agents. Cell metab. 2015 May; 21 (5): 777–89. DOI: 10.1016/j.cmet.2015.04.009.
  30. Ying W. NAD+ and NADH in cellular functions and cell death. Front Biosci. 2006 Sep 1; 11: 3129–48.
  31. Ying W. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal. 2008 Feb; 10 (2): 179–206. DOI: 10.1089/ars.2007.1672.
  32. Verdin E. NAD(+) in aging, metabolism, and neurodegeneration. Science. 2015 Dec 4; 350 (6265): 1208–13. DOI: 10.1126/science.aac4854.
  33. Matlashov ME, Bogdanova YA, Ermakova GV, Mishina NM, Ermakova YG, Nikitin ES et al. Fluorescent ratiometric pH indicator SypHer2: Applications in neuroscience and regenerative biology. Biochim Biophys Acta. 2015 Nov; 1850 (11): 2318–28. DOI: 10.1016/j.bbagen.2015.08.002.
  34. Bucher T, Brauser B, Conze A, Klein F, Langguth O, Sies H. State of oxidation-reduction and state of binding in the cytosolic NADH-system as disclosed by equilibration with extracellular lactate-pyruvate in hemoglobin-free perfused rat liver. Eur J Biochem. 1972 May 23; 27 (2): 301–17.
  35. Williamson DH, Lund P, Krebs HA. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J. 1967 May; 103 (2): 514–27.
  36. Poole RC, Halestrap AP. Transport of lactate and other monocarboxylates across mammalian plasma membranes. Am J Physiol. 1993 Apr; 264 (4 Pt 1): C761–82. DOI: 10.1152/ajpcell.1993.264.4.C761.
  37. Zima AV, Kockskamper J, Mejia-Alvarez R, Blatter LA. Pyruvate modulates cardiac sarcoplasmic reticulum Ca2+ release in rats via mitochondria-dependent and -independent mechanisms. J Physiol. 2003; 550 (Pt 3): 765–83.
  38. Elsliger MA, Wachter RM, Hanson GT, Kallio K, Remington SJ. Structural and spectral response of green fluorescent protein variants to changes in pH. Biochemistry. 1999 Apr 27; 38 (17): 5296–301. DOI: 10.1021/bi9902182.