ORIGINAL RESEARCH

Persistence of oncolytic Coxsackie virus A7 in subcutaneous human glioblastoma xenografts in mice in the context of experimental therapy

About authors

1 Engelhardt Institute of Molecular Biology, Moscow

2 Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow

3 Burdenko National Medical Research Center of Neurosurgery, Moscow

Correspondence should be addressed: Peter M. Chumakov
Vavilova 32, Moscow, 119991; moc.oohay@mpvokamuhc

About paper

Funding: the study was supported by the Ministry of Education and Science of the Russian Federation; project code RFMEFI60714X0014.

Received: 2018-07-13 Accepted: 2018-07-16 Published online: 2018-08-11
|
  1. Sosnovtceva AO, Grinenko NF, Lipatova AV, Chumakov PM, Chekhonin VP. Onkoliticheskie virusy v terapii zlorfchestvennyh gliom. Biomeditsinskaia khimiia. 2016; 62 (4): 376–90. Epub 2016/08/27. DOI: 10.18097/pbmc20166204376. PubMed PMID: 27562991.
  2. Gubanova NV, Gaytan AS, Razumov IA, Mordvinov VA, Krivoshapkin AL, Netesov SV, i dr. Onkoliticheskie virusy v terapii gliom. Molecularnaja Biologija. 2012; 46 (6): 726–38.
  3. Wakimoto H, Kesari S, Farrell CJ, Curry WT, Jr, Zaupa C, Aghi M, et al. Human glioblastoma–derived cancer stem cells: establishment of invasive glioma models and treatment with oncolytic herpes simplex virus vectors. Cancer Res. 2009; 69 (8): 3472–81.
  4. Alonso MM, Jiang H, Gomez-Manzano C, Fueyo J. Targeting brain tumor stem cells with oncolytic adenoviruses. Methods Mol Biol. 2012; 797: 111–25.
  5. Cheema TA, Wakimoto H, Fecci PE, Ning J, Kuroda T, Jeyaretna DS, et al. Multifaceted oncolytic virus therapy for glioblastoma in an immunocompetent cancer stem cell model. Proc Natl Acad Sci USA. 2013; 110 (29): 12006–11. Epub 2013/06/12. DOI: 10.1073/pnas.1307935110. PubMed PMID: 23754388; PubMed Central PMCID: PMCPMC3718117.
  6. van den Hengel SK, Balvers RK, Dautzenberg IJ, van den Wollenberg DJ, Kloezeman JJ, Lamfers ML, et al. Heterogeneous reovirus susceptibility in human glioblastoma stem-like cell cultures. Cancer Gene Ther. 2013; 20 (9): 507–13. Epub 2013/08/03. DOI: 10.1038/cgt.2013.47. PubMed PMID: 23907517.
  7. Zhu Z, Gorman MJ, McKenzie LD, Chai JN, Hubert CG, Prager BC, et al. Zika virus has oncolytic activity against glioblastoma stem cells. J Exp Med. 2017; 214 (10): 2843–57. Epub 2017/09/07. DOI: 10.1084/jem.20171093. PubMed PMID: 28874392; PubMed Central PMCID: PMCPMC5626408.
  8. Csatary LK, Bakacs T. Use of Newcastle disease virus vaccine (MTH-68/H) in a patient with high-grade glioblastoma. JAMA. 1999; 281 (17): 588–9.
  9. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144 (5): 646–74.
  10. Zheltukhin AO, Chumakov PM. Povstdnevnye i induziuemye funkzii gena р53. Uspehi biologicheskoj chimii. 2010; 50: 447– 516.
  11. Chumakov PM. Function of the p53 gene: choice between life and death. Biochemistry Biokhimii͡a. 2000; 65 (1): 28–40.
  12. Chumakov PM. Versatile functions of p53 protein in multicellular organisms. Biochemistry (Mosc). 2007; 72 (13): 1399–421. Epub 2008/02/20. DOI: BCM72131399 [pii]. PubMed PMID: 18282133; PubMed Central PMCID: PMC2709848.
  13. Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol. 2014; 14 (1): 36–49. Epub 2013/12/24. DOI: 10.1038/nri3581. PubMed PMID: 24362405; PubMed Central PMCID: PMCPMC4084561.
  14. Stark GR, Darnell JE, Jr. The JAK-STAT pathway at twenty. Immunity. 2012; 36 (4): 503–14. Epub 2012/04/24. DOI: 10.1016/j.immuni.2012.03.013. PubMed PMID: 22520844; PubMed Central PMCID: PMCPMC3909993.
  15. Zitvogel L, Galluzzi L, Kepp O, Smyth MJ, Kroemer G. Type I interferons in anticancer immunity. Nat Rev Immunol. 2015; 15 (7): 405–14. Epub 2015/06/02. DOI: 10.1038/nri3845. PubMed PMID: 26027717.
  16. Groner B, von Manstein V. Jak Stat signaling and cancer: Opportunities, benefits and side effects of targeted inhibition. Mol Cell Endocrinol. 2017; 451: 1–14. Epub 2017/06/04. DOI: 10.1016/j.mce.2017.05.033. PubMed PMID: 28576744.
  17. Heiber JF, Barber GN. Evaluation of innate immune signaling pathways in transformed cells. Methods Mol Biol. 2012; 797: 217–38.
  18. Li Q, Tainsky MA. Epigenetic silencing of IRF7 and/or IRF5 in lung cancer cells leads to increased sensitivity to oncolytic viruses. PLoS One. 2011; 6 (12): e28683. Epub 2011/12/24. DOI: 10.1371/journal.pone.0028683. PubMed PMID: 22194884; PubMed Central PMCID: PMCPMC3237484.
  19. Pikor LA, Bell JC, Diallo J-S. Oncolytic viruses: exploiting cancer's deal with the Devil. Trends in Cancer. 2015; 1 (4): 266–77.
  20. Stojdl DF, Lichty B, Knowles S, Marius R, Atkins H, Sonenberg N, et al. Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat Med. 2000; 6 (7): 821–5.
  21. Bell JC, McFadden G. Editorial overview: Oncolytic viruses-replicating virus therapeutics for the treatment of cancer. Curr Opin Virol. 2015; 13: viii–ix. Epub 2015/08/12. DOI: 10.1016/j. coviro.2015.07.005. PubMed PMID: 26260227.
  22. Fukuhara H, Ino Y, Todo T. Oncolytic virus therapy: A new era of cancer treatment at dawn. Cancer Sci. 2016; 107 (10): 1373–9. Epub 2016/10/30. DOI: 10.1111/cas.13027. PubMed PMID: 27486853; PubMed Central PMCID: PMCPMC5084676.
  23. Naik S, Russell SJ. Engineering oncolytic viruses to exploit tumor specific defects in innate immune signaling pathways. Expert Opin Biol Ther. 2009; 9 (9): 1163–76.
  24. Russell SJ, Peng KW, Bell JC. Oncolytic virotherapy. Nat Biotechnol. 2012; 30 (7): 658–70.
  25. Keller BA, Bell JC. Oncolytic viruses-immunotherapeutics on the rise. J Mol Med (Berl). 2016; 94 (9): 979–91. Epub 2016/08/06. DOI: 10.1007/s00109-016-1453-9. PubMed PMID: 27492706.
  26. Miao D, Van Allen EM. Genomic determinants of cancer immunotherapy. Curr Opin Immunol. 2016; 41: 32–8. Epub 2016/06/03. DOI: 10.1016/j.coi.2016.05.010. PubMed PMID: 27254251.
  27. Papaioannou NE, Beniata OV, Vitsos P, Tsitsilonis O, Samara P. Harnessing the immune system to improve cancer therapy. Annals of translational medicine. 2016; 4 (14): 261. Epub 2016/08/27. DOI: 10.21037/atm.2016.04.01. PubMed PMID: 27563648; PubMed Central PMCID: PMCPMC4971375.
  28. Shen W, Patnaik MM, Ruiz A, Russell SJ, Peng KW. Immunovirotherapy with vesicular stomatitis virus and PD-L1 blockade enhances therapeutic outcome in murine acute myeloid leukemia. Blood. 2016; 127 (11): 1449–58. Epub 2015/12/30. DOI: 10.1182/blood-2015-06-652503. PubMed PMID: 26712908; PubMed Central PMCID: PMCPMC4797021.
  29. Liston A, Farr AG, Chen Z, Benoist C, Mathis D, Manley NR, et al. Lack of Foxp3 function and expression in the thymic epithelium. J Exp Med. 2007; 204 (3): 475–80. Epub 2007/03/14. DOI: 10.1084/jem.20062465. PubMed PMID: 17353370; PubMed Central PMCID: PMCPMC2137899.
  30. Parney IF, Petruk KC, Zhang C, Farr-Jones M, Sykes DB, Chang LJ. Granulocyte-macrophage colony-stimulating factor and B7-2 combination immunogene therapy in an allogeneic Hu-PBL-SCID/ beige mouse-human glioblastoma multiforme model. Hum Gene Ther. 1997; 8 (9): 1073–85. Epub 1997/06/10. DOI: 10.1089/ hum.1997.8.9-1073. PubMed PMID: 9189765.
  31. Willmon C, Harrington K, Kottke T, Prestwich R, Melcher A, Vile R. Cell carriers for oncolytic viruses: Fed Ex for cancer therapy. Mol Ther. 2009; 17 (10): 1667–76.
  32. Collet G, Grillon C, Nadim M, Kieda C. Trojan horse at cellular level for tumor gene therapies. Gene. 2013; 525 (2): 208–16. Epub 2013/04/02. DOI: 10.1016/j.gene.2013.03.057. PubMed PMID: 23542073.
  33. Pan PY, Chen HM, Chen SH. Myeloid-derived suppressor cells as a Trojan horse: A cellular vehicle for the delivery of oncolytic viruses. Oncoimmunology. 2013; 2 (8): e25083. Epub 2013/10/02. DOI: 10.4161/onci.25083. PubMed PMID: 24083075; PubMed Central PMCID: PMCPMC3782526.
  34. Kim SS, Pirollo KF, Chang EH. Isolation and Culturing of Glioma Cancer Stem Cells. Current protocols in cell biology. 2015; 67: 23.10.1–10. Epub 2015/06/11. DOI: 10.1002/0471143030. cb2310s67. PubMed PMID: 26061242; PubMed Central PMCID: PMCPmc4471477.
  35. Lathia JD, Mack SC, Mulkearns-Hubert EE, Valentim CL, Rich JN. Cancer stem cells in glioblastoma. Genes Dev. 2015; 29 (12): 1203–17. Epub 2015/06/26. DOI: 10.1101/gad.261982.115. PubMed PMID: 26109046; PubMed Central PMCID: PMCPMC4495393.
  36. Shaheen S, Ahmed M, Lorenzi F, Nateri AS. Spheroid-Formation (Colonosphere) Assay for in Vitro Assessment and Expansion of Stem Cells in Colon Cancer. Stem Cell Rev. 2016; 12 (4): 492–9. Epub 2016/05/22. DOI: 10.1007/s12015-016-9664-6. PubMed PMID: 27207017.
  37. Dashzeveg NK, Taftaf R, Ramos EK, Torre-Healy L, Chumakova A, Silver DJ, et al. New Advances and Challenges of Targeting Cancer Stem Cells. Cancer Res. 2017; 77 (19): 5222–7. Epub 2017/09/21. DOI: 10.1158/0008-5472.can-17-0054. PubMed PMID: 28928129.
  38. Natsume A, Kato T, Kinjo S, Enomoto A, Toda H, Shimato S, et al. Girdin maintains the stemness of glioblastoma stem cells. Oncogene. 2012; 31 (22): 2715–24. Epub 2011/10/25. DOI: 10.1038/onc.2011.466. PubMed PMID: 22020337.
  39. Zheltukhin AO, Soboleva AV, Sosnovtseva AO, Le TH, Ilyinskaya GV, Kochetkov DV, et al. Human enteroviruses exhibit selective oncolytic activity in the model of human glioblastoma multiforme xenografts in immunodeficient mice. Vestn RSMU. 2018; 2: 42–49
  40. Chumakov PM, Мoosova VV, Babkin IV, Baykov IK, Netesov СV, Тikunova NV. Onkoliticheskie enterovirusy. Molekuljarnaja biologija. 2012; 46 (6): 712–25.
  41. Voroshilova MK. Interferon-producing enterovirus vaccines. (Live enterovirus vaccines, their interfering and interferonogenic activity and their use for prophylaxis of enteroviral and respiratory infections). Crit Rev Clin Lab Sci. 1970: 117–8.
  42. Bøyum A, Scand. J. Isolation of mononuclear cells and gr anulocytes from human blood. (Paper IV). Clin Lab Invest. 1968; 97 (21 Suppl.): 77–89.
  43. Zheltukhin AO, Sidorenko AS, Kriukova KK, Golbin DA, Tereshkova AV. Persistent virus presence during experimental oncolytic virus therapy in the model of subcutaneous mouse xenografts of human gliobolastoma multiforme. J Pharm Sci Res. 2017; 9 (11): 2224–6.
  44. Yamayoshi S, Iizuka S, Yamashita T, Minagawa H, Mizuta K, Okamoto M, et al. Human SCARB2-dependent infection by coxsackievirus A7, A14, and A16 and enterovirus 71. J Virol. 2012; 86 (10): 5686–96. Epub 2012/03/23. DOI: 10.1128/ jvi.00020-12. PubMed PMID: 22438546; PubMed Central PMCID: PMCPMC3347270.