ORIGINAL RESEARCH

Activation of CD4+CD39+ Т cells in colorectal canser

Zhulai GА1, Churov AV1, Oleinik EK1, Romanov AA2, Semakova PN1, Oleinik VM1
About authors

1 Institute of Biology, Karelian Research Center of the Russian Academy of Sciences (IB KarRC RAS), Petrozavodsk

2 Republic Oncology Center, Petrozavodsk

Correspondence should be addressed: Galina A. Zhulai
Pushkinskaya 11, Petrozavodsk, Republic of Karelia, 185014; ur.xednay@111-ilaghz

About paper

Funding: the study was part of the State assignment for the Federal Research Center Karelian Research Center of the Russian Academy of Sciences (Project 0221-2017-0043).

Received: 2018-01-25 Accepted: 2018-03-20 Published online: 2018-07-25
|
  1. Kaprin AD, Starinski VV, Petrova GV. Sostoyanie onkologicheskoi pomoshi naseliniyu Rossii v 2015. M.: MNIOI im. Gerchena; 2016. 250 s. Russian.
  2. Tsimmerman YaS. Colorectal cancer: state-of-the-art. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2012; 22 (4): 5–17. Russian.
  3. Mougiakakos D. Regulatory T cells in colorectal cancer: from biology to prognostic relevance. Cancers. 2011; 3: 1708–31.
  4. Salama P, Phillips M, Grieu F, Morris M, Zeps N, Joseph D, et al. Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol. 2009; 27: 186–92.
  5. Nosho K, Baba Y, Tanaka N, Shima K, Hayashi M, Meyerhardt JA, et al. Tumour-infiltrating T-cell subsets, molecular changes in colorectal cancer, and prognosis: cohort study and literature review. J Pathol. 2010; 222 (4): 4350–66.
  6. Lutgens MW, Vleggaar FP, Schipper ME, Stokkers PC, van der Woude CJ, Hommes DW, et al. High frequency of early colorectal cancer in inflammatory bowel disease. Gut. 2008; 57: 1246–51.
  7. Lasry A, Zinger A, Ben-Neriah Y. Inflammatory networks underlying colorectal cancer. Nat Immunol. 2016; 17 (3): 230–40.
  8. Antonioli L, Blandizzi C, Pacher P, Haskó G. Immunity, inflammation and cancer: a leading role for adenosine. Nat Rev Cancer. 2013; 13: 842–57.
  9. Antonioli L, Pacher P, Vizi ES, Haskó G. CD39 and CD73 in immunity and inflammation. Trends Mol Med. 2013; 19: 355–67.
  10. Sitkovsky MV, Kjaergaard J, Lukashev D, Ohta A. Hypoxia-adenosinergic immunosuppression: tumor protection by T regulatory cells and cancerous tissue hypoxia. Clin Cancer Res. 2008; 14: 5947–52.
  11. Jackson SW, Hoshi T, Wu Y, Sun X, Enjyoji K, Cszimadia E, et al. Disordered purinergic signaling inhibits pathological angiogenesis in cd39/Entpd1-null mice. Am J Pathol. 2007; 171: 1395–404.
  12. Stagg J, Beavis PA, Divisekera U, Liu MC, Moller A, Darcy PK, et al. CD73-deficient mice are resistant to carcinogenesis. Cancer Res. 2012; 72: 2190–6.
  13. Beavis PA, Stagg J, Darcy PK, Smyth MJ. CD73: a potent suppressor of antitumor immune responses. Trends Immunol. 2012; 33: 231–7.
  14. Bastid J, Cottalorda-Regairaz A, Alberici G, Bonnefoy N, Eliaou JF, Bensussan A. ENTPD1/CD39 is a promising therapeutic target in oncology. Oncogene. 2013; 32: 1743–51.
  15. Kravchenko PN, Zhulai GA, Churov AV, Oleinik EK, Oleinik VM, Barysheva OYu, i dr. Subpopulations of Regulatory T-lymphocytes in the Peripheral Blood of Patients with Rheumatoid Arthritis. Annals of the Russian Academy of Medical Sciences. 2016; 71 (2): 148–153. Russian.
  16. Churov AV. Regulatory T cells and aging. Advances in gerontology. 2013; 26 (4): 603–609. Russian.
  17. Morikawa H, Sakaguchi S. Genetic and epigenetic basis of Treg cell development and function: from a FoxP3-centered view to an epigenome-defined view of natural Treg cells. Immunological Reviews. 2014; 259 (1): 192–205.
  18. Whiteside TL. Regulatory T cell subsets in human cancer: are they regulating for or against tumor progression? Cancer Immunol Immunother. 2014; 63: 67–72.
  19. Zhulai GA, Oleinik EK, Romanov AA, Oleinik VM, Churov AV, Kravchenko PN. Circulating regulatory T-cells and changes in the subpopulation composition of lymphocytes in colorectal cancer patients. Problems in oncology. 2016; 62 (1): 96–100. Russian.
  20. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med. 2007; 204: 1257–65.
  21. Mandapathil M, Hilldorfer B, Szczepanski MJ, Czystowska M, Szajnik M, Ren J, et al. Generation and accumulation of immunosuppressive adenosine by human CD4+CD25highFOXP3+ regulatory T cells. Journal of Biological Chemistry. 2010; 285: 7176–86.
  22. Ernst PB, Garrison JC, Thompson LF. Much ado about adenosine: adenosine synthesis and function in regulatory T cell biology. J Immunol. 2010; 185: 1993–98.
  23. Dwyer KM, Deaglio S, Gao W, Friedman D, Strom TB, Robson SC. CD39 and control of cellular immune responses. Purinergic Signal. 2007; 3: 171–80.
  24. Al Mofleh IA. Severe acute pancreatitis: pathogenetic aspects and prognostic factors. World J Gastroenterol. 2008; 14: 675–84.
  25. Vinnik YuS, Cherdancev DV, Salmina AB, Markelova NM, Miller SV. Osobennosti regulyacii apoptoza immunokompetentnih kletok pri ostrom destruktivnom pankreatite. Novosti hirurgii. 2011; 9 (2): 37–42. Russian.
  26. Zhang XP, Chen HQ, Liu F, Zhang J. Advances in researches on the immune dysregulation and therapy of severe acute pancreatitis. J Zhejiang Univ Sci B. 2009; 10 (7): 493–8.