ORIGINAL RESEARCH

Hydroxyapatite and porphyrin-fullerene nanoparticles for diagnostic and therapeutic delivery of paramagnetic ions and radionuclides

Orlova MA1,2, Nikolaev AL1, Trofimova TP1,3, Orlov AP1, Severin AV1, Kalmykov SN1
About authors

1 Faculty of Chemistry, Lomonosov Moscow State University, Moscow

2 Department of Biochemistry and Pharmacology, Dmitry Rogachev National Medical Research Centre of Hematology, Oncology and Immunology, Moscow

3 Institute of Physiological Active Compounds of RAS, Chernogolovka

Correspondence should be addressed: Marina A. Orlova
Leninskie gory 1, bl. 3, Moscow, 119992; ur.liam@mehcoidar.avolro

Received: 2018-06-27 Accepted: 2018-09-20 Published online: 2018-12-25
|
  1. Karachunskie AI, Rumyantseva YuV, fon Shtakelberg A. Anti- CD19 monoclonal antibody in acute lymphoblastic leukemia in children. Russ J Pediatric Hematol Oncol. 2016; 3 (4): 60–72. DOI: 10.21682/2311-1267-2016-3-4-60-72.
  2. Lee Y, Lin Y, Lima C. Factors Controlling the Role of Zn and Reactivity of Zn-bound Cysteines in Proteins: Application to Drug Target Discovery. J Chin Chem Soc. 2014; 61 (1): 142–50. DOI: 10.1002/jccs.201300392.
  3. Chen Z, Ma L, Liu Y, Chen C. Applications of Functionalized Fullerenes in Tumor Theranostics. Theranostics. 2012; 2 (3): 238– 50. DOI: 10.7150/thno.3509.
  4. Mochalin VN, Shenderova O, Ho D, Gogotsi Y. The properties and applications of nanodiamonds. Nature Nanotechnol. 2011; 7 (1): 11–23. DOI: 10.1038/nnano.2011.209.
  5. Meshalkin YP, Bgatova NP. Prospects and problems of using inorganic nanoparticles in oncology. J Siber Fed Univ Biol. 2008; 3 (1): 248–68.
  6. Nunes C, Estevez SV, Chantada MP. Inorganic nanoparticles in diagnosis and treatment of breast cancer. J Biol Inorg Chem. 2018; (23): 331–45. DOI: org/10.1007/s00775-018-1542-z.
  7. Lasis DD, Papahadjopoulos D, editors. Medical Applications of Liposomes. USA: Elsevier Sci, 2007; 779 p. DOI: 1016/B978-0- 444-82917-7.X5000-5.
  8. Haidary SM, Corcoles EP, Ali NK. Nanoporous Silicon as Drug Delivery Systems for Cancer Therapies. J Nanomater. 2012; ID 830503:15. DOI: 10.1155/2012/830503.
  9. Ferraz MP, Monteiro FJ, Manuel CM. Hydroxyapatite nanoparticles: A review of preparation methodologies. J Appl Biomater Biomechanics. 2004; 2 (2): 74–80.
  10. Zhao Y, Alakhova DY, Kim JO, Bronich TK, Kabanov AV. A simple way to enhance Doxil therapy: Drug release from liposomes at the tumor site by amphiphilic block copolymer. J Control Release. 2013; 168 (1): 61–9. DOI: 10.1016/j.jconrel.2013.02.026.
  11. Liu JH, Cao L, Luo PG et al. Fullerene-conjugated doxorubicin in cells. Acs Appl Mater Interf. 2010; (2): 1384–9.
  12. Buchachenko AL, Kouznetsov DA, Breslavskaya NN, Orlova MA. Magnesium Isotope Effect in Enzymatic Phosphorylation. J Phys Chem. 2008; (112): 2548–56.
  13. Orlova MA, Osipova EY, Roumiantsev SA. Effect of 67Zn- Nanoparticles on Leukemic Cells and Normal Lymphocytes. Br J Med Med Res. 2012; 2 (1): 21–30. DOI: 10.9734/ BJMMR/2012/783.
  14. Sun F, Zhou H, Lee J. Various preparation methods of highly porous hydroxyapatite/polymer nanoscale biocomposites for bone regeneration. Acta Biomaterialia. 2011; 7 (11): 3813–28. DOI: 10.1016/j.actbio.2011.07.002.
  15. Hutmacher DW, Schantz JT, Lam CXF, Tan KC, Lim TC. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regenerative Med. 2007; 1 (4): 245–60. DOI: 10.1002/term.24.
  16. Orlova MA, Trofimova TP, Aliev RA, Orlov AP, Nikulin SV, Kalmykov SN et al. 69mZn-containing radiopharmaceuticals. A novel approach to molecular design. J Radioanal Nucl Chem. 2017; 311 (2): 1177–83. DOI: 10.1007/s10967-016-5076-y.
  17. Orlov AP, Orlova MA, Trofimova TP, Osipova EY, Proshin AN. Effect of salicylates and zinc salts on leukemic cells. Russ Chem Bull. 2016; 65 (7): 1879–81. DOI: 10.1007/s11172-016-1525-6.
  18. Safronova EV, Putlyaev VI, Sergeeva AI, Kunenkov EV, Tretyakov YD. Synthesis of Nanocrystalline Calcium Hydroxyapatite from Calcium Saccharates and Ammonium Hydrogen Phosphate. Doklady Chem. 2009; 426 (2): 118–23. DOI: 10.1134/S0012500809060020.
  19. Thian ES, Konishi T, Kawanobe Y, Lim PN, Choong C, Ho B, Aizawa M. Zinc-substituted hydroxyapatite: a biomaterial with enhanced bioactivity and antibacterial properties. J Mater Sci: Mater Med. 2013; 24 (2): 437–45. DOI: 10.1007/s10856-012- 4817-x.
  20. Tang Y, Chappell HF, Dove MT, Reeder RJ, Lee YJ. Zinc incorporation into hydroxylapatite. Biomaterials. 2009; 30 (15): 2864–2872. DOI: 10.1016/j.biomaterials.2009.01.043.
  21. Severin AV, Pankratov DA. Synthesis of nanohydroxyapatite in the presence of iron (III) ions. Russ J Inorg Chem. 2016; 61 (1): 265–72.
  22. Xu Y, Schwartz FW, Traina SJ. Sorption of Zn2+ and Cd2+ on Hydroxyapatite Surfaces. Envir Sci Technol. 1994; 28 (8): 1472– 80.
  23. Markovic Z, Trajkovic V. Biomedical potential of the reactive oxygen species generation and quenching by fullerenes (C60). Biomaterials, 2008; (29): 3561–73.
  24. Fortner JD, Lyon DY, Sayes CM, Boyd AM, Falkner JC, Hotze EM et al. C-60 in water: nanocrystal formation and microbial response. Environ Sci Technol. 2005; (39): 4307–16.
  25. Colvin VL. The potential environmental impact of engineered nanomaterials. Nat Biotechnol. 2003; (21): 1166–70.
  26. Sayes CM, Gobin AM, Ausman KD, Mendez J, West J, Colvin VL. Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials. 2005; (26): 7587–95.
  27. Colvin RA, Holmes WR, Fontainea CP, Maret W. Cytosolic zinc buffering and muffling: their role in intracellular zinc homeostasis. Metallomics. 2010; 2 (2): 306–17.
  28. Du Y, Guo D, Wu Q, Liu D, Bi H. Zinc Chloride Inhibits Human Lens Epithelial Cell Migration and Proliferation Involved in TGF-β1 and TNF-α Signaling Pathways in HLE B-3 Cells. Biol Trace Elem Res. 2014; 159 (4): 425–43. DOI: 10.1007/s12011-014-9979-6.