
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (CC BY).
ORIGINAL RESEARCH
Application of nanoscale polymer colloid carriers for targeted delivery of the brain-derived neurotrophic factor through the blood-brain barrier in experimental parkinsonism
1 Faculty of Medicine and Health Sciences, University Malaysia Sarawak (UNIMAS), Kota Samarahan, Sarawak, Malaysia
2 Department for Expertise of Medicinal Products safety, Scientific Centre for Expert Evaluation of Medicinal Products, Moscow
3 Faculty of Medicine, University Teknologi MARA, Sungai Buloh, Selangor, Malaysia
4 Department of Operative Surgery and Topographic Anatomy, Sechenov First Moscow State Medical University, Moscow
Correspondence should be addressed: Renad N. Alayutdin
1 Volokolamskiy Proezd 10, bl. 4, Moscow, 119876; ur.liam@nudtuayla
Funding: this work was supported by the grant 600-RMI/RAGS 5/3 (92/2013) of the Universiti Teknologi MARA (UiTM), Selangor, Malaysia.
- Alyautdin RN, Deshmukh R, Petrov VE. Transport lekarstvennykh veshchestv cherez gematoencephalicheskiy barier. Vestnik NII Molekulyarnoy meditsiny. 2003; 11–29.
- Lockman PR, Mumper RJ, Khan MA, Allen DD. Nanoparticle technology for drug delivery across blood-brain barrier. Drug Dev Ind Pharm. 2002; 28 (1): 1–13.
- Begley DJ. Understanding and circumventing the blood-brain barrier. Acta Paediatr Suppl. 2003; 92: 83–91.
- Lefauconneir JM. The blood brain barrier. J Physiological Data. 1998; 140 (1): 3–13.
- Alyautdin RN, Petrov VE, Kharkevich DA, Kreuter J. Passage of peptides across the blood-brain barrier with nanoparticles. Eur J Pharm Sci. 1994; (3): 91–2.
- Bibel M, Barde Y. Neurotrophins: key regulator of cell fate and cell shape in the vertebrate nervous system. Genes Dev. 2000; (14): 2919–37.
- Castellenos-Ortega MR, Cruz-Aguado R, Martinez-Marty L. Nerve growth factor: possibilities and limitations of its clinical application. Rev Neurol. 1999; 29 (5): 439–71.
- Przedborski S, Jackson-Lewis V, Djaldetti R, Liberatore G, Vila M, Vukosavic S, Almer G. The parkinsonian toxin MPTP: action and mechanism. Restor Neurol Neurosci. 2000; 16 (2): 135–42.
- Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev. 2001; (47): 65–81.
- Kurakhmaeva K, Djindjikhashvili I, Petrov V, Balabanjan V, Voronina T, Trofimov S et al. Brain targeting of nerve growth factor using poly(butylcyanoacrilate) nanoparticles. J Drug Targ. 2009; (17): 564–74.
- Limongi T, Rocchi A, Cesca F, Tan H, Miele E, Giugni A. Delivery of Brain-Derived Neurotrophic Factor by 3D Biocompatible Polymeric Scaffolds for Neural Tissue Engineering and Neuronal Regeneration. Mol Neurobiol. 2018 Mar 29. DOI: 10.1007/ s12035-018-1022-z.
- Tyler WJ, Perrett, Pozzo-Miller LD. The role of neurotrophins in neurotransmitter release. Neuroscience. 2002; (8): 524–31.
- Schindowski K, Belarbi K, Buée L. Neurotrophic factors in Alzheimer’s disease: role of axonal transport. Genes Brain Behav. 2008; (7): 43–56.
- Bhurtel S, Katila N, Neupane S, Srivastav S, Park PH, Choi D. Methyleneblue protects dopaminergic neurons against MPTP- induced neurotoxicity by upregulating brain-derived neurotrophic factor. Ann N Y Acad Sci. 2018.DOI: 10.1111/nyas.13870. Available at: https://www.ncbi.nlm.nih.gov/pubmed/29882218#.
- Chen JF, Wang M, Zhuang YH, Behnisch T. Intracerebroventricularly- administered 1-methyl-4-phenylpyridinium ion and brain derived neurotrophic faсtor affect catecholaminergic nerve terminals and neurogenesis in the hippocampus, striatum and substantia nigra. Neural Regen Res. 2018; (13): 717–26. DOI: 10.4103/1673-5374.230300.