ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ

Молекулярная природа ГКР-спектров суспензий E .coli при длинах волн возбуждения 532 и 785 нм с использованием золей наночастиц серебра в качестве ГКР-субстратов

Е. А. Дурович1, Е. Г. Евтушенко1,2, О. В. Сенько1, Н. А. Степанов1, Е. . Н. Ефременко1, А. В. Еременко2, И. Н. Курочкин1,2
Информация об авторах

1 Кафедра химической энзимологии, химический факультет,
Московский государственный университет имени М. В. Ломоносова, Москва

2 Институт биохимической физики имени Н. М. Эмануэля РАН, Москва, Россия

Для корреспонденции: Евгений Геннадиевич Евтушенко
Ленинские горы, д. 1, стр. 3, г. Москва, 119991; ur.usm.mehc.emyzne@oknehsutve

Статья получена: 15.08.2018 Статья принята к печати: 09.09.2018 Опубликовано online: 31.12.2018
|
  1. Efrima S, Bronk BV. Silver Colloids Impregnating or Coating Bacteria. J Phys Chem B. 1998; 102 (31): 5947–50.
  2. Zeiri L, Bronk BV, Shabtai Y, Czégé J, Efrima S. Silver metal induced surface enhanced Raman of bacteria. Colloids Surfaces A Physicochem Eng Asp. 2002; 208 (1): 357–62.
  3. Picorel R, Lu T, Holt RE, Cotton TM, Seibert M. Surface-Enhanced Resonance Raman Scattering (SERRS) Spectroscopy of Bacterial Membranes: The Flavoproteins. In: Baltscheffsky M, editor. Current Research in Photosynthesis: Proceedings of the VIIIth International Conference on Photosynthesis; 1989 Aug 6–11; Stockholm, Sweden. Dordrecht: Springer Netherlands, 1990; p. 1867–70.
  4. Zeiri L, Bronk BV, Shabtai Y, Eichler J, Efrima S. Surface-Enhanced Raman Spectroscopy as a Tool for Probing Specific Biochemical Components in Bacteria. Appl Spectrosc. 2004; 58 (1): 33–40.
  5. Guzelian AA, Sylvia JM, Janni JA, Clauson SL, Spencer KM. SERS of whole-cell bacteria and trace levels of biological molecules. Proc. SPIE, Vibrational Spectroscopy-Based Sensor Systems. 2002; (4577): 183–92.
  6. Jarvis RM, Goodacre R. Discrimination of Bacteria Using Surface- Enhanced Raman Spectroscopy. Anal Chem. 2004; 76 (1): 40–7.
  7. Premasiri WR, Moir DT, Klempner MS, Krieger N, Jones G, Ziegler LD. Characterization of the Surface Enhanced Raman Scattering (SERS) of Bacteria. J Phys Chem B. 2005; 109 (1): 312–20.
  8. Luo BS, Lin M. A Portable Raman System for the Identification of Foodborne Pathogenic Bacteria. J Rapid Methods Autom Microbiol. 2008; 16 (3): 238–55.
  9. Kahraman M, Keseroǧlu K, Çulha M. On sample preparation for surface-enhanced Raman scattering (SERS) of bacteria and the source of spectral features of the spectra. Appl Spectrosc. 2011; 65 (5): 500–6.
  10. Feng J, de la Fuente-Núñez C, Trimble MJ, Xu J, Hancock REW, Lu X. An in situ Raman spectroscopy-based microfluidic “lab-on-a-chip” platform for non-destructive and continuous characterization of Pseudomonas aeruginosa biofilms. Chem Commun. 2015; 51 (43): 8966–9.
  11. Su L, Zhang P, Zheng D, Wang Y, Zhong R. Rapid detection of Escherichia coli and Salmonella typhimurium by surface-enhanced Raman scattering. Optoelectron Lett. 2015; 11 (2): 157–160.
  12. Mosier-Boss AP. Review on SERS of Bacteria. Biosensors. 2017; 7 (4): 51–76.
  13. Witkowska E, Korsak D, Kowalska A, Janeczek A, Kamińska A. Strain-level typing and identification of bacteria — a novel approach for SERS active plasmonic nanostructures. Anal Bioanal Chem. 2018; 410 (20): 5019–31.
  14. Patel IS, Premasiri WR, Moir DT, Ziegler LD. Barcoding bacterial cells: a SERS-based methodology for pathogen identification. J Raman Spectrosc. 2008; 39 (11): 1660–72.
  15. Sundaram J, Park B, Hinton A, Lawrence KC, Kwon Y. Detection and differentiation of Salmonella serotypes using surface enhanced Raman scattering (SERS) technique. J Food Meas Charact. 2013; 7 (1): 1–12.
  16. Premasiri WR, Lee JC, Sauer-Budge A, Théberge R, Costello CE, Ziegler LD. The biochemical origins of the surface-enhanced Raman spectra of bacteria: a metabolomics profiling by SERS. Anal Bioanal Chem. 2016; 408 (17): 4631–47.
  17. Marotta NE, Bottomley LA. Surface-Enhanced Raman Scattering of Bacterial Cell Culture Growth Media. Appl Spectrosc. 2010; 64 (6): 601–6.
  18. Leopold N, Lendl B. A New Method for Fast Preparation of Highly Surface-Enhanced Raman Scattering (SERS) Active Silver Colloids at Room Temperature by Reduction of Silver Nitrate with Hydroxylamine Hydrochloride. J Phys Chem B. 2003; 107 (24): 5723–7.
  19. Cañamares MV, Garcia-Ramos JV, Sanchez-Cortes S, Castillejo M, Oujja M. Comparative SERS effectiveness of silver nanoparticles prepared by different methods: A study of the enhancement factor and the interfacial properties. J Colloid Interface Sci. 2008; 326 (1): 103–9.
  20. Knauer M, Ivleva NP, Niessner R, Haisch C. Optimized Surface-enhanced Raman Scattering (SERS) Colloids for the Characterization of Microorganisms. Anal Sci. 2010; 26 (7): 761–6.
  21. Félix-Rivera H, González R, Rodríguez GDM, Primera-Pedrozo OM, Ríos-Velázquez C, Hernández-Rivera SP. Improving SERS Detection of Bacillus thuringiensis Using Silver Nanoparticles Reduced with Hydroxylamine and with Citrate Capped Borohydride. Int J Spectrosc. 2011; Article ID 989504.
  22. Ranc V, Hruzikova J, Maitner K, Prucek R, Milde D, Kvítek L. Quantification of purine basis in their mixtures at femto-molar concentration levels using FT-SERS. J Raman Spectrosc. 2011; 43 (8): 971–6.
  23. Kim SK, Kim MS, Suh SW. Surface-enhanced Raman scattering (SERS) of aromatic amino acids and their glycyl dipeptides in silver sol. J Raman Spectrosc. 1987; 18 (3): 171–5.
  24. Kazanci M, Schulte JP, Douglas C, Fratzl P, Pink D, Smith- Palmer T. Tuning the Surface-Enhanced Raman Scattering Effect to Different Molecular Groups by Switching the Silver Colloid Solution pH. Appl Spectrosc. 2009; 63 (2): 214–3.
  25. Smith-Palmer T, Douglas C, Fredericks P. Rationalizing the SER spectra of bacteria. Vib Spectrosc. 2010; 53 (1): 103–6.