ORIGINAL RESEARCH

Molecular origin of surface-enhanced Raman spectra of E. coli suspensions excited at 532 and 785 nm using silver nanoparticle sols as sers substrates

Durovich EA1, Evtushenko EG1,2, Senko OV1, Stepanov NA1, Efremenko EN1, Eremenko AV2, Kurochkin IN1,2
About authors

1 Faculty of Chemistry, Lomonosov Moscow State University

2 Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Moscow, Russia

Correspondence should be addressed: Evgeniy G. Evtushenko
Leninskie gory, 1 bl. 3, Moscow, 119991; ur.usm.mehc.emyzne@oknehsutve

Received: 2018-08-15 Accepted: 2018-09-09 Published online: 2018-12-31
|
  1. Efrima S, Bronk BV. Silver Colloids Impregnating or Coating Bacteria. J Phys Chem B. 1998; 102 (31): 5947–50.
  2. Zeiri L, Bronk BV, Shabtai Y, Czégé J, Efrima S. Silver metal induced surface enhanced Raman of bacteria. Colloids Surfaces A Physicochem Eng Asp. 2002; 208 (1): 357–62.
  3. Picorel R, Lu T, Holt RE, Cotton TM, Seibert M. Surface-Enhanced Resonance Raman Scattering (SERRS) Spectroscopy of Bacterial Membranes: The Flavoproteins. In: Baltscheffsky M, editor. Current Research in Photosynthesis: Proceedings of the VIIIth International Conference on Photosynthesis; 1989 Aug 6–11; Stockholm, Sweden. Dordrecht: Springer Netherlands, 1990; p. 1867–70.
  4. Zeiri L, Bronk BV, Shabtai Y, Eichler J, Efrima S. Surface-Enhanced Raman Spectroscopy as a Tool for Probing Specific Biochemical Components in Bacteria. Appl Spectrosc. 2004; 58 (1): 33–40.
  5. Guzelian AA, Sylvia JM, Janni JA, Clauson SL, Spencer KM. SERS of whole-cell bacteria and trace levels of biological molecules. Proc. SPIE, Vibrational Spectroscopy-Based Sensor Systems. 2002; (4577): 183–92.
  6. Jarvis RM, Goodacre R. Discrimination of Bacteria Using Surface- Enhanced Raman Spectroscopy. Anal Chem. 2004; 76 (1): 40–7.
  7. Premasiri WR, Moir DT, Klempner MS, Krieger N, Jones G, Ziegler LD. Characterization of the Surface Enhanced Raman Scattering (SERS) of Bacteria. J Phys Chem B. 2005; 109 (1): 312–20.
  8. Luo BS, Lin M. A Portable Raman System for the Identification of Foodborne Pathogenic Bacteria. J Rapid Methods Autom Microbiol. 2008; 16 (3): 238–55.
  9. Kahraman M, Keseroǧlu K, Çulha M. On sample preparation for surface-enhanced Raman scattering (SERS) of bacteria and the source of spectral features of the spectra. Appl Spectrosc. 2011; 65 (5): 500–6.
  10. Feng J, de la Fuente-Núñez C, Trimble MJ, Xu J, Hancock REW, Lu X. An in situ Raman spectroscopy-based microfluidic “lab-on-a-chip” platform for non-destructive and continuous characterization of Pseudomonas aeruginosa biofilms. Chem Commun. 2015; 51 (43): 8966–9.
  11. Su L, Zhang P, Zheng D, Wang Y, Zhong R. Rapid detection of Escherichia coli and Salmonella typhimurium by surface-enhanced Raman scattering. Optoelectron Lett. 2015; 11 (2): 157–160.
  12. Mosier-Boss AP. Review on SERS of Bacteria. Biosensors. 2017; 7 (4): 51–76.
  13. Witkowska E, Korsak D, Kowalska A, Janeczek A, Kamińska A. Strain-level typing and identification of bacteria — a novel approach for SERS active plasmonic nanostructures. Anal Bioanal Chem. 2018; 410 (20): 5019–31.
  14. Patel IS, Premasiri WR, Moir DT, Ziegler LD. Barcoding bacterial cells: a SERS-based methodology for pathogen identification. J Raman Spectrosc. 2008; 39 (11): 1660–72.
  15. Sundaram J, Park B, Hinton A, Lawrence KC, Kwon Y. Detection and differentiation of Salmonella serotypes using surface enhanced Raman scattering (SERS) technique. J Food Meas Charact. 2013; 7 (1): 1–12.
  16. Premasiri WR, Lee JC, Sauer-Budge A, Théberge R, Costello CE, Ziegler LD. The biochemical origins of the surface-enhanced Raman spectra of bacteria: a metabolomics profiling by SERS. Anal Bioanal Chem. 2016; 408 (17): 4631–47.
  17. Marotta NE, Bottomley LA. Surface-Enhanced Raman Scattering of Bacterial Cell Culture Growth Media. Appl Spectrosc. 2010; 64 (6): 601–6.
  18. Leopold N, Lendl B. A New Method for Fast Preparation of Highly Surface-Enhanced Raman Scattering (SERS) Active Silver Colloids at Room Temperature by Reduction of Silver Nitrate with Hydroxylamine Hydrochloride. J Phys Chem B. 2003; 107 (24): 5723–7.
  19. Cañamares MV, Garcia-Ramos JV, Sanchez-Cortes S, Castillejo M, Oujja M. Comparative SERS effectiveness of silver nanoparticles prepared by different methods: A study of the enhancement factor and the interfacial properties. J Colloid Interface Sci. 2008; 326 (1): 103–9.
  20. Knauer M, Ivleva NP, Niessner R, Haisch C. Optimized Surface-enhanced Raman Scattering (SERS) Colloids for the Characterization of Microorganisms. Anal Sci. 2010; 26 (7): 761–6.
  21. Félix-Rivera H, González R, Rodríguez GDM, Primera-Pedrozo OM, Ríos-Velázquez C, Hernández-Rivera SP. Improving SERS Detection of Bacillus thuringiensis Using Silver Nanoparticles Reduced with Hydroxylamine and with Citrate Capped Borohydride. Int J Spectrosc. 2011; Article ID 989504.
  22. Ranc V, Hruzikova J, Maitner K, Prucek R, Milde D, Kvítek L. Quantification of purine basis in their mixtures at femto-molar concentration levels using FT-SERS. J Raman Spectrosc. 2011; 43 (8): 971–6.
  23. Kim SK, Kim MS, Suh SW. Surface-enhanced Raman scattering (SERS) of aromatic amino acids and their glycyl dipeptides in silver sol. J Raman Spectrosc. 1987; 18 (3): 171–5.
  24. Kazanci M, Schulte JP, Douglas C, Fratzl P, Pink D, Smith- Palmer T. Tuning the Surface-Enhanced Raman Scattering Effect to Different Molecular Groups by Switching the Silver Colloid Solution pH. Appl Spectrosc. 2009; 63 (2): 214–3.
  25. Smith-Palmer T, Douglas C, Fredericks P. Rationalizing the SER spectra of bacteria. Vib Spectrosc. 2010; 53 (1): 103–6.