ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ

Наночастицы способны направлять трансплантированные мезенхимальные стволовые клетки в посттравматический свищ у крыс с повреждениями спинного мозга

Ч. Чжан1,2,3,4, А. Ю. Морозова4, В. П. Баклаушев3, И. Л. Губский2, П. А. Мельников4, А. Н. Габашвили6, Г. Ванг1, Л. Ли1, Х. Ву1, К. Ванг5, В. П. Чехонин2,4
Информация об авторах

1 Кафедра опухолей костей и мягких тканей, Онкологический институт и госпиталь Тяньцзиньского медицинского университета, Национальный клинический исследовательский центр рака, Главная лаборатория профилактики и лечения рака, Тяньцзиньский клинический исследовательский центр рака, Тяньцзинь, Китай

2 Кафедра медицинской нанобиотехнологии, Российский национальный исследовательский медицинский университет имени Н. И. Пирогова, Москва

3 Федеральное медико-биологическое агентство, Москва

4 Отдел фундаментальной и прикладной нейробиологии, Национальный медицинский исследовательский центр психиатрии и наркологии имени В. П. Сербского, Москва

5 Кафедра эпидемиологии и биостатистики, Первая больница медицинского университета Сухопутных войск, Чунцин, Китай

6 Институт общей генетики имени Н. И. Вавилова РАН (ИОГЕН РАН), Москва, Российская Федерация

Для корреспонденции: Чао Чжан
Хуан ХУСи, Район Хэси, Тяньцзинь, 300060, Китай; nc.ude.umt@oahcgnahzrd; gro.noitadnuofoa@sdrahcir.ffoeg

Информация о статье

Финансирование: исследование поддержано Китайским стипендиальным советом (№ 201406940004) и Российским научным фондом (№ 16-15-10432).

Статья получена: 26.08.2018 Статья принята к печати: 25.09.2018 Опубликовано online: 31.12.2018
|
  1. Ning GZ, Yu TQ, Feng SQ, Zhou XH, Ban DX, Liu Y et al. Epidemiology of traumatic spinal cord injury in Tianjin, China. Spinal Cord. 2011; (49): 386–90.
  2. Furlan JC, Sakakibara BM, Miller WC, Krassioukov AV. Global incidence and prevalence of traumatic spinal cord injury. Can J Neurol Sci. 2014; (40): 456–64.
  3. Oliveri RS, Bello S, Biering-Sørensen F. Mesenchymal stem cells improve locomotor recovery in traumatic spinal cord injury: systematic review with meta-analyses of rat models. Neurobiol Dis. 2014; (62): 338–53.
  4. Devivo M. Epidemiology of traumatic spinal cord injury: Trends and future implications. Spinal Cord. 2012; (50): 365–72.
  5. Siddiqui AM, Khazaei M, Fehlings MG. Translating mechanisms of neuroprotection, regeneration, and repair to treatment of spinal cord injury. Prog Brain Res. 2015; (218): 15–54.
  6. Salewski RP, Mitchell RA, Li L, Shen C, Milekovskaia M, Nagy A et al. Transplantation of Induced Pluripotent Stem Cell-Derived Neural Stem Cells Mediate Functional Recovery Following Thoracic Spinal Cord Injury Through Remyelination of Axons. Stem Cells Transl Med. 2015; (4): 743–54.
  7. Raspa A, Pugliese R, Maleki M, Gelain F. Recent therapeutic approaches for spinal cord injury. Biotechnol Bioeng. 2016; (113): 253–9.
  8. Boido M, Garbossa D, Fontanella M, Ducati A, Vercelli A. Mesenchymal stem cell transplantation reduces glial cyst and improves functional outcome after spinal cord compression. World Neurosurg. 2014; (81): 183–90.
  9. Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991; (9): 641–50.
  10. U.S. National Institutes of Health. Clinical trials. Available from: https://clinicaltrials.gov/.
  11. de Almeida FM, Marques SA, Ramalho Bdos S, Massoto TB, Martinez AM. Chronic spinal cord lesions respond positively to tranplants of mesenchymal stem cells. Restor Neurol Neurosci. 2015; (33): 43–55.
  12. Mendonça MV, Larocca TF, de Freitas Souza BS, Villarreal CF, Silva LF, Matos AC et al. Safety and neurological assessments after autologous transplantation of bone marrow mesenchymal stem cells in subjects with chronic spinal cord injury. Stem Cell Res Ther. 2014; (5): 126.
  13. Lee SH, Kim Y, Rhew D, Kuk M, Kim M, Kim WH et al. Effect of the combination of mesenchymal stromal cells and chondroitinase ABC on chronic spinal cord injury. Cytotherapy. 2015; (17): 1374–83.
  14. Amr SM, Gouda A, Koptan WT, Galal AA, Abdel-Fattah DS, Rashed LA et al. Bridging defects in chronic spinal cord injury using peripheral nerve grafts combined with a chitosan-laminin scaffold and enhancing regeneration through them by co-transplantation with bone-marrow-derived mesenchymal stem cells: case series of 14 patients. J Spinal Cord Med. 2014; (37): 54–71.
  15. Dai G, Liu X, Zhang Z, Yang Z, Dai Y, Xu R. Transplantation of autologous bone marrow mesenchymal stem cells in the treatment of complete and chronic cervical spinal cord injury. Brain Res. 2013; (1533): 73–9.
  16. Hodgetts SI, Simmons PJ, Plant GW. A comparison of the behavioral and anatomical outcomes in sub-acute and chronic spinal cord injury models following treatment with human mesenchymal precursor cell transplantation and recombinant decorin. Exp Neurol. 2013; (248): 343–9.
  17. Ning G, Tang L, Wu Q, Li Y, Li Y, Zhang C et al. Human umbilical cord blood stem cells for spinal cord injury: early transplantation results in better local angiogenesis. Regen Med. 2013; (8): 271–81.
  18. Takahashi Y, Tsuji O, Kumagai G, Hara CM, Okano HJ, Miyawaki A et al. Comparative study of methods for administering neural stem/ progenitor cells to treat spinal cord injury in mice. Cell Transplant. 2011; (20): 727–39.
  19. Kim JW, Ha KY, Molon JN, Kim YH. Bone marrow-derived mesenchymal stem cell transplantation for chronic spinal cord injury in rats: comparative study between intralesional and intravenous transplantation. Spine (Phila Pa 1976). 2013; (38): E1065–74.
  20. Amemori T, Jendelová P, Růzicková K, Arboleda D, Syková E. Co-transplantation of olfactory ensheathing glia and mesenchymal stromal cells does not have synergistic effects after spinal cord injury in the rat. Cytotherapy. 2010; (12): 212–25.
  21. Kang KN, Kim DY, Yoon SM, Lee JY, Lee BN, Kwon JS et al. Tissue engineered regeneration of completely transected spinal cord using human mesenchymal stem cells. Biomaterials. 2012; (33): 4828–35.
  22. Kumagai G, Tsoulfas P, Toh S, McNiece I, Bramlett HM, Dietrich WD. Genetically modified mesenchymal stem cells (MSCs) promote axonal regeneration and prevent hypersensitivity after spinal cord injury. Exp Neurol. 2013; (248): 369–80.
  23. Karamouzian S, Nematollahi-Mahani SN, Nakhaee N, Eskandary H. Clinical safety and primary efficacy of bone marrow mesenchymal cell transplantation in subacute spinal cord injured patients. Clin Neurol Neurosurg. 2012; (114): 935–9.
  24. Abakumov MA, Nukolova NV, Sokolsky-Papkov M, et al. VEGF-targeted magnetic nanoparticles for MRI visualization of brain tumor. Nanomedicine. 2015; 11 (4): 825–33.
  25. Zhang C, Morozova AY, Abakumov MA, Gubsky IL, Douglas P, Feng S et al. Precise Delivery Into Chronic Spinal Cord Injury Syringomyelic Cysts with Magnetic Nanoparticles MRI Visualization. Med Sci Monit. 2015; (21): 3179–85.
  26. Cigognini D, Satta A, Colleoni B, Silva D, Donegà M, Antonini S et al. Evaluation of early and late effects into the acute spinal cord injury of an injectable functionalized self-assembling scaffold. PLoS One. 2011; (6): e1978.
  27. Mannoji C, Koda M, Kamiya K, Dezawa M, Hashimoto M, Furuya T et al. Transplantation of human bone marrow stromal cell-derived neuroregenrative cells promotes functional recovery after spinal cord injury in mice. Acta Neurobiol Exp (Wars). 2014; (74): 479–88.
  28. Rao YJ, Zhu WX, Du ZQ, Jia CX, Du TX, Zhao QA et al. Effectiveness of olfactory ensheathing cell transplantation for treatment of spinal cord injury. Genet Mol Res. 2014; (13): 4124–9.