ORIGINAL RESEARCH
Towards a computational prediction for the tumor selective accumulation of paramagnetic nanoparticles in retinoblastoma cells
1 Department of Mathematics and Computer Science, University of Southern Denmark, Odense, DK-5230, Denmark
2 N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow
3 Department of Medical Nanobiotechnologies,Pirogov Russian National Research Medical University, Moscow
Correspondence should be addressed: Dmitry A. Kuznetsov
Ostrovityanova 1, Moscow, 117997; ur.liam@onanzuk
Acknowledgments: this work was performed due to an exceptional technical assistance kindly provided by Erasmus-Plus DK06811/2020 Program associates affiliated with the Southern Denmark University at Odense, Denmark, and, most specifically, by Ms. Patricia Wladycziewski, SDU Erasmus chief supervising officer.
- Buchachenko AL. Magneto-Biology and Medicine. New York: Nova Biomedical Publ., 2015.
- Bukhvostov AA, Dvornikov AS, Ermakov KV, Kurapov PB, Kuznetsov DA. Retinoblastoma: magnetic isotope effects might make a differece in the current anti-cancer research strategy. Acta Medica (Prague). 2017; 60 (2): 93–6.
- Bukhvostov AA, Dvornikov AS, Ermakov KV, Kuznetsov DA. Retinoblastoma case: shall we get a paramagnetic trend in chemotherapy? Arch Cancer Res. 2017; 5 (4): 158–62.
- Bukhvostov AA, Pavlov KA, Ermakov KV, Sidoruk KN, Rybakova IV, Kuznetsov DA, Roumiantsev SA. An atypical β-like DNA Polymerase of retinoblastoma cells as a target for spin-selective inhibitory cytostatics. J Fund Med Biol (Russian). 2018; 7 (2): 50–3.
- Orlova MA, Osipova EY, Roumiantsev SA. Effect of 67Zn- nanoparticles on leukemic cells and normal lymphocytes. Brit J Med Med Res. 2012; 2 (1): 21–30.
- Orlov AP, Orlova MA, Trofimova TP, Kalmykov SN, Kuznetsov DA. The role of zinc and its compounds in leukemia. J Biol Inorg Chem. 2018; 23 (3): 347–62.
- Siccardi M, Owen A. Towards a computational prediction of nanoparticle pharmakokinetics and distribution. J In Silico & In Vitro Pharmacol. 2016; 2 (1): 8–11.
- Augsburger JJ, Chow CML, Dyer V, Roussel MF. Translating science into survival. In: Cajjar A, Pappo A, editors. St. Jude's Children's Research Hospital Report. St. Judes CRH Publ.: Memphis, TN — Cincinnati, OH. 2016; 6–55.
- Zhang J, Benavente CA, McEvoy J, Flores-Otero J, Ding L, Chen X, Ulyanov A. A novel retinoblastoma therapy from genomic and epigenetic analyses. Nature. 2012; 481 (7381): 329–34.
- Bozic I, Nowak MA. Resisting resistance. Ann Rev Cancer Biol. 2017; 1 (1): 203–21.
- Bassukas ID. Comparative Gompertzian analysis of alterations of tumor growth patterns. Cancer Res. 1994; 54 (16): 4385–92.
- Byrne H, Prezidosi L. Modelling solid tumor growth using the theory of mixtures. Math Med Biol. 2003; 20 (4): 341–66.
- Komarova NL. Mathematical modelling of tumorigenesis: mission possible. Curr Opinion Oncol. 2005; 17 (1): 39–43.
- Trapp S, Horobin RW. A predictive model for the selective accumulation of chemicals in tumor cells. Eur Biophys J. 2005; 34 (7): 959–66.
- Udvardi L, Lakatos J, Loewenhaupt RK. Dividing Cell. In Vitro–In Silico Models. Szeged, Budapest: Alba Regia, 2017.
- Lehman RJ, Waugh TS, Rattenau KR, Bielka H. An expanding compartment mode to implement a guest probe diffusion input adopted by the comprehensive Gunault muxtures theory. In: Sieliwanowicz B, Martell SJ, edsitors.Combinational Dynamics in Systems Theory. Sydney—Melbourne—Perth: Adler & Adler Publ., 2018; 116–37.
- Lamprecht A, Pellecker J. Anti-cancer nano-size agents: targeting paths and pharmacokinetics. In: Lamprecht A, editor. Nanotherapeutics. Drug Delivery Concepts in Nanoscience. NY—London—Singapore: Pan Stanford Publ., 2018; 92–101.
- Altinok A, Gonze D, Levi F, Goldbeter A. An Automaton model for the cell cycle. Interface Focus. 2011; 1 (1): 36–47.
- Delbreaux J, Pitot CA. Mathematical model in a new drug preclinical trial. Predictive power and limitations. Leuven— Ghent—Antwerp: Leuven University Press, 2018.