ORIGINAL RESEARCH

Combination of ribosome and phage display for fast selection of high affinity VHH antibody fragments

About authors

Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia

Correspondence should be addressed: Stepan P. Chumakov
Miklukho-Maklaya, 16/10, Moscow, 117997; moc.liamg@lukhtah

About paper

Funding: the work was funded by MESR, project code RFMEFI60716X0156.

Author contribution: Kravchenko YuE — Alpaca blood collection and processing, RNA extraction, ELISA; Ivanov SV — construction of libraries of VHH-fragments of antibodies, selection by phage display; Kravchenko DS — protein purification, experiments with eucaryotic cell cultures; Frolova EI — research planning, animal immunization, manuscript editing; Chumakov SP — research planning, selection by ribosome display, analysis of the results, writing a manuscript.

Received: 2018-12-08 Accepted: 2018-12-22 Published online: 2019-02-25
|
  1. Carmen S, Jermutus L. Concepts in antibody phage display. Brief Funct Genomic Proteomic. 2002; 1 (2): 189–203. PubMed PMID: 15239904.
  2. Vaughan TJ, Williams AJ, Pritchard K, Osbourn JK, Pope AR, Earnshaw JC, et al. Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat Biotechnol. 1996; 14 (3): 309–14. DOI: 10.1038/ nbt0396-309. PubMed PMID: 9630891.
  3. He M, Khan F. Ribosome display: next-generation display technologies for production of antibodies in vitro. Expert Rev Proteomics. 2005; 2 (3): 421–30. Epub 2005/07/08. DOI: 10.1586/14789450.2.3.421. PubMed PMID: 16000087.
  4. Ponsel D, Neugebauer J, Ladetzki-Baehs K, Tissot K. High affinity, developability and functional size: the holy grail of combinatorial antibody library generation. Molecules. 2011; 16 (5): 3675–700. Epub 2011/05/05. DOI: 10.3390/molecules16053675 [pii]. PubMed PMID: 21540796.
  5. Maass DR, Sepulveda J, Pernthaner A, Shoemaker CB. Alpaca (Lama pacos) as a convenient source of recombinant camelid heavy chain antibodies (VHHs). J Immunol Methods. 2007; 324 (1–2): 13–25. Epub 2007/06/15. DOI: S0022-1759(07)00119-6 [pii]. 10.1016/j.jim.2007.04.008. PubMed PMID: 17568607.
  6. Van Bockstaele F, Holz JB, Revets H. The development of nanobodies for therapeutic applications. Curr Opin Investig Drugs. 2009; 10 (11): 1212–24. Epub 2009/10/31. PubMed PMID: 19876789.
  7. He M, Taussig MJ. Eukaryotic ribosome display with in situ DNA recovery. Nat Methods. 2007; 4 (3): 281–8. DOI: 10.1038/ nmeth1001. PubMed PMID: 17327849.
  8. Benhar I, Reiter Y. Phage display of single-chain antibody constructs. Curr Protoc Immunol. 2002; Chapter 10: Unit 10 9B. DOI: 10.1002/0471142735.im1019bs48. PubMed PMID: 18432867.
  9. Studier FW. Protein production by auto-induction in high density shaking cultures. Protein Expr Purif. 2005; 41 (1): 207–34. PubMed PMID: 15915565.
  10. Harmsen MM, Ruuls RC, Nijman IJ, Niewold TA, Frenken LG, de Geus B. Llama heavy-chain V regions consist of at least four distinct subfamilies revealing novel sequence features. Mol Immunol. 2000; 37 (10): 579–90. PubMed PMID: 11163394.
  11. Avila F, Baily MP, Perelman P, Das PJ, Pontius J, Chowdhary R, et al. A comprehensive whole-genome integrated cytogenetic map for the alpaca (Lama pacos). Cytogenet Genome Res. 2014; 144 (3): 196–207. DOI: 10.1159/000370329. PubMed PMID: 25662411.
  12. Grigoriadis A, Mackay A, Noel E, Wu PJ, Natrajan R, Frankum J, et al. Molecular characterisation of cell line models for triple-negative breast cancers. BMC Genomics. 2012; (13): 619. DOI: 10.1186/1471-2164-13-619. PubMed PMID: 23151021.
  13. Deschacht N, De Groeve K, Vincke C, Raes G, De Baetselier P, Muyldermans S. A novel promiscuous class of camelid single-domain antibody contributes to the antigen-binding repertoire. J Immunol. 2010; 184 (10): 5696–704. DOI: 10.4049/ jimmunol.0903722. PubMed PMID: 20404276.