ORIGINAL RESEARCH
High-speed brain-computer communication interface based on code-modulated visual evoked potentials
1 Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
2 Department of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
Correspondence should be addressed: Rafael K. Grigoryan
Leninskie Gory 1, bld. 12, Moscow, 119234; moc.liamg@oib.hparrg
Author contribution: Grigoryan RK — experiment planning and conducting, data processing, article authoring; Filatov DB — experiment planning, software development, article authoring; Kaplan AY — task setting, experiment planning, general research effort management, article authoring.
- Kaplan AY. Neurophysiological foundations and practical realizations of the brain–machine interfaces in the technology in neurological rehabilitation. Hum Physiol. 2016 Jan 23; 42 (1): 103–10.
- Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM. Brain-computer interfaces for communication and control. Clin Neurophysiol [Internet]. 2002 Jun; 113 (6): 767–91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12048038.
- Jeunet C, Lotte F, Batail J-M, Philip P, Micoulaud Franchi J-A. Using Recent BCI Literature to Deepen our Understanding of Clinical Neurofeedback: A Short Review. Neuroscience [Internet]. 2018 May 15 [cited 2018 Jul 24]; (378): 225–33. Available from: https://www.sciencedirect.com/science/article/pii/S0306452218302045.
- Akram F, Han H-S, Kim T-S. A P300-based brain computer interface system for words typing. Comput Biol Med [Internet]. 2014 Feb [cited 2014 Jun 1]; (45): 118–25. Available from: http:// www.ncbi.nlm.nih.gov/pubmed/24480171.
- Yeom SK, Fazli S, Ller KRM, Lee SW. An efficient ERP-based brain-computer interface using random set presentation and face familiarity. PLoS One. 2014; 9 (11): 1–13.
- Guger C, Allison BZ, Edlinger G. Emerging BCI Opportunities from a Market Perspective. In Springer, Dordrecht; 2014 [cited 2018 Jul 16]: 85–98. Available from: http://link.springer.com/10.1007/978- 94-017-8996-7_7.
- McCane LM, Heckman SM, McFarland DJ, Townsend G, Mak JN, Sellers EW, et al. P300-based brain-computer interface (BCI) event-related potentials (ERPs): People with amyotrophic lateral sclerosis (ALS) vs. age-matched controls. Clin Neurophysiol [Internet]. 2015 Nov 1 [cited 2018 Jul 16]; 126 (11): 2124–31. Available from: https://www.sciencedirect.com/science/article/ pii/S138824571500067X.
- Bin G, Gao X, Wang Y, Li Y, Hong B, Gao S. A high-speed BCI based on code modulation VEP. J Neural Eng. 2011; 8 (2): 025015.
- Kapeller C, Kamada K, Ogawa H, Prueckl R, Scharinger J, Guger C. An electrocorticographic BCI using code-based VEP for control in video applications: a single-subject study. Front Syst Neurosci [Internet]. 2014 Aug 7 [cited 2018 Jul 17]; (8): 139. Available from: http://journal.frontiersin.org/article/10.3389/fnsys.2014.00139/ abstract.
- Spüler M, Rosenstiel W, Bogdan M. Online Adaptation of a c-VEP Brain-Computer Interface(BCI) Based on Error-Related Potentials and Unsupervised Learning. Baumert M, editor. PLoS One [Internet]. 2012 Dec 7 [cited 2018 Jul 17]; 7 (12): e51077. Available from: http://dx.plos.org/10.1371/journal.pone.0051077.
- Nezamfar H, Salehi SSM, Erdogmus D. Stimuli with opponent colors and higher bit rate enable higher accuracy for C-VEP BCI. In: 2015 IEEE Signal Processing in Medicine and Biology Symposium (SPMB) [Internet]. IEEE; 2015 [cited 2018 Jul 17]: 1–6. Available from: http://ieeexplore.ieee.org/document/7405476/.
- Jones E, Oliphant T, Peterson P. {SciPy}: Open source scientific tools for {Python}. 2001.
- Yuan P, Gao X, Allison B, Wang Y, Bin G, Gao S. A study of the existing problems of estimating the information transfer rate in online brain–computer interfaces. J Neural Eng [Internet]. 2013 Apr 1 [cited 2018 Jul 16]; 10 (2): 026014. Available from: http:// stacks.iop.org/1741-2552/10/i=2/a=026014?key=crossref.0e89 a1992040af23792558b5b8301c22.
- Wei Q, Gong H, Lu Z. Grouping modulation with different codes for improving performance in cVEP-based brain–computer interfaces. Electron Lett. 2017 Jan 10; 53 (4): 214–6.
- Kleih SC, Kaufmann T, Zickler C, Halder S, Leotta F, Cincotti F, et al. Out of the frying pan into the fire—the P300-based BCI faces real-world challenges. Prog Brain Res [Internet]. 2011 Jan 1 [cited 2018 Jul 16]; (194): 27–46. Available from: https://www. sciencedirect.com/science/article/pii/B9780444538154000194.
- Spezialetti M, Cinque L, Tavares JMRS, Placidi G. Towards EEG-based BCI driven by emotions for addressing BCI-Illiteracy: a meta-analytic review. Behav Inf Technol [Internet]. 2018 Aug 3 [cited 2018 Jul 16]; 37 (8): 855–71. Available from: https://www. tandfonline.com/doi/full/10.1080/0144929X.2018.1485745.
- Jeunet C, Cellard A, Subramanian S, Hachet M, N’Kaoua B, Lotte F. How Well Can We Learn With Standard BCI Training Approaches? A Pilot Study. 2014 [cited 2018 Jul 16]; Available from: https://hal.archives-ouvertes.fr/hal-01052692/.
- Carabalona R. The Role of the Interplay between Stimulus Type and Timing in Explaining BCI-Illiteracy for Visual P300-Based Brain- Computer Interfaces. Front Neurosci [Internet]. 2017 Jun 30 [cited 2018 Jul 16]; (11): 363. Available from: http://journal.frontiersin.org/ article/10.3389/fnins.2017.00363/full.
- Aminaka D, Rutkowski TM. A Sixteen-Command and 40 Hz Carrier Frequency Code-Modulated Visual Evoked Potential BCI. In Springer, Cham; 2017 [cited 2018 Jul 16]: 97–104. Available from: http://link.springer.com/10.1007/978-3-319-64373-1_10.