ORIGINAL RESEARCH

Internal carotid and vertebral artery dissection: morphology, pathophysiology and provoking factors

Kalashnikova LA, Gulevskaya TS, Sakharova AV, Chaykovskaya RP, Gubanova MV, Danilova MS, Shabalina AA, Dobrynina LA
About authors

Research Center of Neurology, Moscow, Russia

Correspondence should be addressed: Ludmila A. Kalashnikova
Volokolamskoe shosse, 80, Moscow, 125367; ur.xednay@ncnavokinhsalak

About paper

Funding: this study was part of the state assignment for Research Center of Neurology.

Author contribution: Kalashnikova LA, Gubanova MV — literature analysis, data acquisition, processing of the obtained data, manuscript preparation; Gulveskaya TS, Sakharova AV, Chaykovskaya RP, Shabalina AA — data acquisition, analysis and interpretation; Danilova MS — recruitment of participants; Dobrynina LA — processing of the obtained data, manuscript preparation.

Received: 2019-09-03 Accepted: 2019-10-19 Published online: 2019-10-04
|
  1. Kalashnikova LA, Dobrynina LA. Dissekcija arterij golovnogo mozga: ishemicheskij insul't i drugie klinicheskie projavlenija. M.: Izd-vo «Vako», 2013; 208 s. Russian.
  2. Robertson JJ, Koyfman А. Cervical artery dissection: a review. J Emerg Med. 2016; 51 (5): 508–18. PubMed PMID: 27634674.
  3. Hakimi R, Sivakumar S. Imaging of Carotid Dissection. Curr Pain Headache Rep. 2019; 23 (1): 2. PubMed PMID: 30661121.
  4. Kalashnikova LA, Dobrynina LA, Dreval MV, Doronina EV, Nazarova MA. Shejnaya i golovnaja bol' kak edinstvennoe projavlenie dissekcii vnutrennej sonnoj i pozvonochnoj arterij. Zhurnal nevrologii i psihiatrii im. Korsakova. 2015; (3): 9–16. PubMed PMID: 24300790. Russian.
  5. Débette S. Pathophysiology and risk factors for cervical artery dissection: what have we learned from large hospital-based cohorts? Curr Opin Neurol. 2014; (1): 20–8. PubMed PMID: 24300790.
  6. von Babo M, De Marchis GM, Sarikaya H, Stapf C, Buffon F, Fischer U, et al. Differences and similarities between spontaneous dissections of the internal carotid artery and the vertebral artery. Stroke. 2013; 44 (6): 1537–42. PubMed PMID: 23632978.
  7. Debette S, Grond-Ginsbach C, Bodenant M, Kloss M, Engelter S, Metso, et al. Differential features of carotid and vertebral artery dissections: the CADISP study. Neurology. 2011; 77 (12): 1174– 81. PubMed PMID: 21900632.
  8. Brandt T, Hausser I, Orberk E, Grau A, Hartschuh W, Anton- Lamprecht I, et al. Ultrastructural connective tissue abnormalities in patients with spontaneous cervicocerebral artery dissections. Ann Neurol. 1998; (44): 281–285. PubMed PMID: 9708556.
  9. Giossi A, Ritelli M, Costa P, Morotti A, Poli L, Del Zotto E, et al. Connective tissue anomalies in patients with spontaneous cervical artery dissection. Neurology. 2014; 83 (22): 2032–7. PubMed PMID: 25355826.
  10. Grond-Ginsbach C, Thomas-Feles C, Werner I, Weber R, Wigger F, Hausser I, et al. Mutations in the tropoelastin gene (ELN) were not found in patients with spontaneous cervical artery dissections. Stroke. 2000; 31 (8): 1935–8. PubMed PMID: 10926960.
  11. Grond-Ginsbach C, Weber R, Haas J, Orberk E, Kunz S., Busse O, et al. Mutations in the COL5A1 coding sequence are not common in patients with spontaneous cervical artery dissections. Stroke. 1999; 30 (9):1887–90. PubMed PMID: 10471441.
  12. Lehtonen JM, Forsström S, Bottani E, Viscomi C, Baris OR, Isoniemi H, et al. FGF 21 is a biomarker for mitochondrial translation and mtDNA maintenance disorders. Neurology. 2016; 87 (22): 2290–9. PubMed PMID: 27794108.
  13. Kalashnikova LA, Gulevskaya TS, Anufriev PL, Gnedovskaja EV, Konovalov RN, Piradov MA. Ischemic stroke in young age due to dissection of intracranial carotid artery and its branches (clinical and morphological study). Annals of Clinical and Experimental Neurology. 2009; 3 (1): 18–24. Russian.
  14. Anderson RM, Schechter MM. A case of spontaneous dissecting aneurysm of the internal carotid artery. J Neurol Neurosurg Psychiatry. 1959; (22): 195–201. PMID: 13793447.
  15. Southerland AM, Meschia JF, Worrall BB. Shared associations of nonatherosclerotic, large-vessel, cerebrovascular arteriopathies: considering intracranial aneurysms, cervical artery dissection, moyamoya disease and fibromuscular dysplasia. Curr Opin Neurol. 2013; (26): 13–28. PubMed PMID: 23302803.
  16. Kalashnikova LA, Chaykovskaya RP, Gulevskaya TS, Dobrynina LA, Gubanova MV, Dreval MV, et al. Intimal rupture of the displastic middle cerebral artery wall complicated by thrombosis and fatal ischemic stroke. Zh Nevrol Psikhiatr Im S S Korsakova. 2018; 118 (3): 9–14. PubMed PMID: 29798974. Russian.
  17. Gornik HL, Persu A, Adlam D, Aparicio LS, Azizi M, Boulanger M, et al. First International Consensus on the diagnosis and management of fibromuscular dysplasia. Vascular Medicine. 2019; 24 (2): 164– 89. PubMed PMID: 306448921.
  18. De Giuli V, Grassi M, Lodigiani C, Patella R, Zedde M, Gandolfo C, et al. Association between migraine and cervical artery dissection: the Italian project on stroke in young adults. JAMA Neurol. 2017; 74 (5) 512–18. PubMed PMID: 28264095.
  19. Schievink WI, Mokri B, Piepgras DG, Kuiper JD. Recurrent spontaneous artery dissections. Risk in familial versus nonfamilial disease. Stroke. 1996; 27 (4): 622–4. PubMed PMID: 8614918.
  20. Kiando SR, Tucker NR, Castro-Vega LJ, Katz A, D'Escamard V, Tréard C, et al. PHACTR1 is a genetic susceptibility locus for fibromuscular dysplasia supporting its complex genetic pattern of inheritance. PLOS Genet. 2016; 12 (10): e1006367. PubMed PMID: 27792790.
  21. Debette S, Kamatani Y, Metso TM, Kloss M, Chauhan G, Engelter ST, et al. Common variation in PHACTR1 is associated with susceptibility to cervical artery dissection. Nat Genet. 2015; 47 (1): 78–83. PubMed PMID: 25420145.
  22. Gubanova MV, Kalashnikova LA, Dobrynina LA, Shamtieva KV, Berdalin AB. Markery displazii soedinitel'noj tkani pri dissekcii magistral'nyh arterij golovy i provocirujushhie faktory dissekcii. Annaly klinicheskoj i jeksperimental'noj nevrologii. 2017; 11 (4): 19–28. DOI: 10.18454/ACEN.2017.4.2. Russian.
  23. Hausser I, Muller U, Engelter S, Lyrer P, Pezzini A, Padovani A, et al. Different types of connective tissue alterations associated with cervical artery dissections. Acta Neuropathol. 2004; 107 (6): 509–14. PubMed PMID: 15067552.
  24. Sakharova AV, Kalashnikova LA, Dobrynina LA, Chaykovskaya RP, Mir-Kasimov MF, Nazarova MA, et al. Morphological signs of mitochondrial cytopathy in skeletal muscles and micro-vessels in a patient with cerebral artery dissection associated with MELAS syndrome. Arkhiv patologii. 2010; 74 (2): 51–6. Russian.
  25. Ganesh SK, Morissette R, Xu Z, Schoenhoff F, Griswold BF, Yang J, et al. Clinical and biochemical profiles suggest fibromuscular dysplasia is a systemic disease with altered TGF-β expression and connective tissue features. FASEB J. 2014; 28 (8): 3313–24. PubMed PMID: 24732132.
  26. Grond-Ginsbach C, Giossi A, Aksay SS, Engelter ST, Lyrer PA, Metso TM, et al. Elevated peripheral leukocyte counts in acute cervical artery dissection. Eur J Neurol. 2013; 20 (10):1405–10. PubMed PMID: 23879551.
  27. Guillon B, Berthet K, Benslamia L, Bertrand M, Bousser MG, Tzourio C. Infection and the risk of spontaneous cervical artery dissection: a case-control study. Stroke. 2003; 34 (7): 79–81. PubMed PMID: 12805497.
  28. Schievink WI, Wijdicks EF, Kuiper JD. Seasonal pattern of spontaneous cervical artery dissection. J Neurosurg. 1998; 89 (1): 101–3. PubMed PMID: 9647179.
  29. Kloss M, Metso A, Pezzini A, Leys D, Giroud M, Metso TM, et al. Towards understanding seasonal variability in cervical artery dissection (CeAD). J Neurol. 2012; 259 (8):1662–7. PubMed PMID: 22286657.
  30. Schievink WI, Mokri B, O’Fallon WM. Recurrent spontaneous cervical-artery dissection. N Engl J Med. 1994; 330 (6): 393–7. PubMed PMID: 8284004.