OPINION

The potential of CD4+ regulatory T cells for the therapy of autoimmune diseases

Churov AV1, Siutkina AI2, Mamashov KY3, Oleinik EK1
About authors

1 Institute of Biology, Karelian Research Center of RAS, Petrozavodsk, Republic of Karelia

2 Perm State Pharmaceutical Academy, Perm, Russia

3 Kemerovo State Medical University, Kemerovo, Russia

Correspondence should be addressed: Alexey V. Churov
Pushkinskaya, 11, Petrozavodsk, 186910; ur.xednay@uoruhca

About paper

Funding: the study was carried out under state order for Karelian Research Centre (ID 0218-2019-0083; Modification of transcription programs of regulatory T cell differentiation in immunoinflammatory diseases and cancer). Its publication was sponsored by Prime Papers LLC.

Acknowledgements: the authors thank the Center for Precision Genome Editing and Genetic Technologies for Biomedicine (Moscow) for consultations.

Author contribution: Churov AV — article design, literature analysis, preparation of the manuscript draft and its final version; Syutkina AI — article design, the major contribution to literature analysis, preparation of the manuscript draft and its final version; Mamashov KY — article design, literature analysis, preparation of the manuscript draft and its final version; Oleinik EK — literature analysis, preparation of the manuscript draft and its final version.

Received: 2019-11-25 Accepted: 2019-12-09 Published online: 2019-12-19
|
  1. Sakaguchi S, Miyara M, Costantino CM, Hafler DA. FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol. 2010; 10 (7): 490–500. DOI:10.1038/nri2785.
  2. Venken K, Hellings N, Liblau R, Stinissen P. Disturbed regulatory T cell homeostasis in multiple sclerosis. Trends Mol Med. 2010; 16 (2): 58–68. DOI: 10.1016/j.molmed.2009.12.003.
  3. Kravchenko PN, Zhulai GA, Churov AV, Oleinik EK, Oleinik VM, Barysheva OY, et al. Subpopulations of regulatory T-lymphocytes in the peripheral blood of patients with rheumatoid arthritis. Vestnik Rossiiskoi Akademii Meditsinskikh Nauk. 2016; 71 (2): 148–153. DOI: 10.15690/vramn656.
  4. Miyara M, Gorochov G, Ehrenstein M, Musset L, Sakaguchi S, Amoura Z. Human FoxP3+ regulatory T cells in systemic autoimmune diseases. Autoimmunity Reviews. 2011; 10 (12): 744–55. DOI:10.1016/j.autrev.2011.05.004.
  5. Fontenot J, Gavin M, Rudensky A. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nature Immunology. 2003; 4 (4): 330–36. DOI: 10.1038/ni904.
  6. Nazzal, Gradolatto, Truffault, Bismuth, Berrih-Aknin. Human thymus medullary epithelial cells promote regulatory T-cell generation by stimulating interleukin-2 production via ICOS ligand. Cell Death Dis. 2014; (5): e1420. DOI:10.1038/cddis.2014.37.
  7. Famili F, Wiekmeijer A-S, Staal F. The development 719 of T cells from stem cells in mice and humans. Future Science OA. 2017; (3): FSO186. DOI:10.4155/fsoa-2016-0095.
  8. Christoffersson G, von Herrath M. Regulatory Immune Mechanisms beyond Regulatory T Cells. Trends in Immunology. 2019; 40 (6): 482–91. DOI:10.1016/j.it.2019.04.005.
  9. Desreumaux P, Foussat A, Allez M, Beaugerie L, Hébuterne X, Bouhnik Y, et al. Safety and efficacy of antigen-specific regulatory T-cell therapy for patients with refractory Crohn’s disease. Gastroenterology. 2012; (143): 1207–17. DOI:10.1053/j. gastro.2012.07.116.
  10. Marek-Trzonkowska N, Myśliwiec M, Dobyszuk A, Grabowska M, Derkowska I, et al. Therapy of type 1 diabetes with CD4(+) CD25(high)CD127-regulatory T cells prolongs survival of pancreatic islets — results of one year follow-up. Clinical immunology (Orlando, Fla). 2014; (153): 23–30. DOI:10.1016/j. clim.2014.03.016.
  11. Bluestone JA, Buckner JH, Fitch M, Gitelman SE, Gupta S, Hellerstein MK, et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Science translational medicine. 2016; (7): 315ra189. DOI:10.1126/scitranslmed.aad4134.
  12. Scottà C, Fanelli G, Hoong SJ, Romano M, Lamperti EN, Sukthankar M, et al. Impact of immunosuppressive drugs on the therapeutic efficacy of ex vivo expanded human regulatory T cells. Haematologica. 2016; (101): 91–100. DOI:10.3324/ haematol.2015.128934.
  13. Ovcinnikovs V, Ross EM, Petersone L, Edner NM, Heuts F, Ntavli E. CTLA-4–mediated transendocytosis of costimulatory molecules primarily targets migratory dendritic cells. Science Immunology. 2019; 4 (35): eaaw0902. DOI:10.1126/sciimmunol.aaw0902.
  14. Arpaia N, Campbell C, Fan X, Dikiy S, Veeken J van der, deRoos P, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013; (504): 451– 5. DOI:10.1038/nature12726.
  15. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science. 2012; 337 (6096): 816–21. DOI:10.1126/science.1225829.
  16. Okada M, Kanamori M, Someya K, Nakatsukasa H, Yoshimura A. Stabilization of Foxp3 expression by CRISPR-dCas9-based epigenome editing in mouse primary T cells. Epigenetics Chromatin. 2017; (10): 24. DOI: 10.1186/s13072-017-0129-1.