CLINICAL CASE

Microcephaly-capillary malformation syndrome

Shchagina OA, Semenova NA, Bessonova LA, Larshina EA, Beskorovainiy NS, Zakharova EYu, Ryzhkova OP, Poliakov AV
About authors

Bochkov Research Center for Medical Genetics, Moscow, Russia

Correspondence should be addressed: Olga A. Shchagina
Moskvorechye, 1, Moscow, 115522; ur.baland@anigahcs, ur.liam@o_anigahcs

About paper

Compliance with ethical standards: the study was approved by the Ethics Committee of the Research Centre for Medical Genetics (protocol № 5/8 dated November 12, 2018). The informed consent to molecular genetic testing, and anonymity-preserving clinical and molecular genetics data publishing (including photos and videos) was submitted by all participants or their legal representatives.

Author contribution: Shchagina OA — study design, molecular genetic analysis, frequency estimation, statistical analysis; Semenova NA, Bessonova LA — clinical examination and genetic counseling of the patients’ families; Larshina EA — biochemical assays, GALT gene analysis; Beskorovainiy NS — exome sequencing data processing; Zakharova EYu — biochemical analysis, prevalence calculation; Ryzhkova OP — pathogenicity analysis of genetic variants, exome sequencing; Poliakov AV — selection of primers for molecular genetic analysis.

Received: 2020-05-18 Accepted: 2020-06-03 Published online: 2020-06-19
|
  1. McDonell LM, Mirzaa GM, Alcantara D, Schwartzentruber J, Carter MT, Lee LJ, et al. Mutations in STAMBP, encoding a deubiquitinating enzyme, cause microcephaly-capillary malformation syndrome. Nat Genet. 2013; 45: 556–62. Available from: https://doi.org/10.1038/ng.2602.
  2. Mirzaa GM, Paciorkowski AR, Smyser CD, Willing MC, Lind AC, Dobyns WB. The microcephaly-capillary malformation syndrome. Am J Med Genet Part A. 2011; Part A 155: 2080–7. DOI: 10.1002/ ajmg.a.34118.
  3. Tanaka N, Kaneko K, Asao H, Kasai H, Endo Y, Fujita T, et al. Possible involvement of a novel STAM-associated molecule “AMSH” in intracellular signal transduction mediated by cytokines. J Biol Chem. 1999; 274: 19129–35. DOI: 10.1074/ jbc.274.27.19129.
  4. McCullough J, Row PE, Lorenzo Ó, Doherty M, Beynon R, Clague MJ, et al. Activation of the endosome-associated ubiquitin isopeptidase AMSH by STAM, a component of the multivesicular body-sorting machinery. Curr Biol. 2006; 16 (2): 160–5. DOI: 10.1016/j.cub.2005.11.073.
  5. Tsang HTH, Connell JW, Brown SE, Thompson A, Reid E, Sanderson CM. A systematic analysis of human CHMP protein interactions: Additional MIT domain-containing proteins bind to multiple components of the human ESCRT III complex. Genomics. 2006; 88 (3): 333–46. DOI: 10.1016/j.ygeno.2006.04.003.
  6. Suzuki S, Tamai K, Watanabe M, Kyuuma M, Ono M, Sugamura K, et al. AMSH is required to degrade ubiquitinated proteins in the central nervous system. Biochem Biophys Res Commun. 2011; 408 (4): 582–8. DOI: 10.1016/j.bbrc.2011.04.065.
  7. Boon LM, Mulliken JB, Vikkula M. RASA1: Variable phenotype with capillary and arteriovenous malformations. Current Opinion in Genetics and Development. 2005; 15 (3): 265–9. DOI: 10.1016/j. gde.2005.03.004.
  8. Naseer MI, Sogaty S, Rasool M, Chaudhary AG, Abutalib YA, Walker S, et al. Microcephaly-capillary malformation syndrome: Brothers with a homozygous STAMBP mutation, uncovered by exome sequencing. Am J Med Genet Part A. 2016; 170 (11): 3018–22. DOI: 10.1002/ajmg.a.37845.
  9. Wu F, Dai Y, Wang J, Cheng M, Wang Y, Li X, et al. Early onset epilepsy and microcephaly capillary malformation syndrome caused by a novel STAMBP mutation in a Chinese boy. Mol Med Rep. 2019; 20 (6): 5145–51. DOI: 10.3892/mmr.2019.10757.
  10. Demikova NS, Kakaulina VS, Pechatnikova NL, Polyakova NA, Zaharova EY, Krylova TD, et al. Hydrocephalus syndrome with capillary malformations. Pediatria (Santiago). 2016; 95 (5): 110–14.
  11. Sсhugareva LM, Poteshkina OV. The Microceph aly-Capillary Malformation Syndrome. Russ Neurosurg J named after Profr AL Polenov. 2018; X (1): 74–9.
  12. Genome Aggregation Database (gnomAD). Available from: https:// gnomad.broadinstitute.org/.
  13. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015; 17: 405–23. DOI: 10.1038/gim.2015.30.
  14. Coelho AI, Trabuco M, Ramos R, Silva MJ, Almeida IT de, Leandro P, et al. Functional and structural impact of the most prevalent missense mutations in classic galactosemia. Mol Genet Genomic Med. 2014; 2(6): 484–96. DOI: 10.1002/mgg3.94.
  15. Kopanos C, Tsiolkas V, Kouris A, Chapple CE, Albarca Aguilera M, Meyer R, et al. VarSome: the human genomic variant search engine. Bioinformatics. 2019; 35 (11): 1978–80. DOI: 10.1093/ bioinformatics/bty897.
  16. Voskoboeva EY, Baydakova GV, Denisenkov AI, Denisenkova EV, Zakharova EY. Galactosemia in Russia: molecular characteristics, neonatal screening, verifying diagnostics. Med Genet. 2009; 8 (6): 25–33.
  17. Novikov PV, Khodunova AA. The first results of extended newborn screening for hereditary metabolic diseases in the Russian Federation. Ros Vestn Perinatol Pediat. 2012; (5): 5–12.