ORIGINAL RESEARCH

Changes in EEG patterns in the α-frequency band following BCI-based therapy in children with cerebral palsy

Larina NV, Nacharova MA, Korsunskaya LL, Vlasenko SV, Pavlenko VB
About authors

V.I. Vernadsky Crimean Federal University, Simferopol, Russia

Correspondence should be addressed: Vladimir B. Pavlenko
Pr. Vernadskogo, 4, Simferopol, 295007; moc.liamg@55vapv

About paper

Funding: the study was part of the state-funded project RFMEFI60519X0186 on the Development of a BCI-based hand exoskeleton with biological feedback for the rehabilitation of children with cerebral palsy. The study was supported by the Ministry of Science and Higher Education of the Russian Federation.

Author contribution: Larina NV, Korsunskaya LL, Vlasenko SV — data acquisition, manuscript preparation; Nacharova MA, Pavlenko VB — data analysis, manuscript preparation.

Compliance with ethical standards: the study was approved by the Ethics Committee of Vernadsky Crimean Federal University (Protocol № 53 dated December 06, 2018). Informed consent was obtained from the patients or their legal representatives.

Received: 2020-06-16 Accepted: 2020-07-02 Published online: 2020-07-16
|
  1. Graham HK, Rosenbaum P, Paneth N, Dan B, Lin JP, Damiano DL, et al. Cerebral palsy. Nat Rev Dis Primers. 2016; 2: 15082. DOI: 10.1038/nrdp.2015.82.
  2. Patel DR, Neelakantan M, Pandher K, Merrick J. Cerebral palsy in children: a clinical overview. Transl Pediatr. 2020; 9 (Suppl 1): 125–35.
  3. Frolov AA, Bobrov PD. Interfejs mozg–komp'juter: nejrofiziologicheskie predposylki i klinicheskoe primenenie. Zhurnal vysshej nervnoj dejatel'nosti im. I. P. Pavlova. 2017; 67 (4): 365–76. Russian.
  4. Chiew M, LaConte S, Graham S. Investigation of fMRI neurofeedback of differential primary motor cortex activity using kinesthetic motor imagery. NeuroImage. 2012; 61 (1): 21–31.
  5. Kotov SV, Turbina LG, Bobrov PD, Frolov AA, Pavlova OG, Kurganskaja ME i dr. Reabilitacija bol'nyh, perenesshih insul't, s pomoshh'ju bioinzhenernogo kompleksa «interfejs mozg– komp'juter + jekzoskelet». Zhurnal nevrologii i psihiatrii im. C. C. Korsakova. 2014; 114 (12–2): 66–72. Russian.
  6. Frolov AA, Mokienko OA, Lyukmanov RKh, Chernikova LA, Kotov SV, Turbina LG et al. Preliminary results of a controlled study of BCI–exoskeleton technology efficacy in patients with poststroke arm paresis. Bulletin of RSMU. 2016; 2: 16–23.
  7. Ponce P, Molina A, Balderas DC, Grammatikou D. Brain Computer Interfaces for Cerebral Palsy. In: E. Suraka, editor. Cerebral Palsy challenges for the future. London: IntechOpen, 2014; р. 245–72. DOI: 10.5772/57084.
  8. Jochumsen M, Shafique M, Hassan A, Niazi IK. Movement intention detection in adolescents with cerebral palsy from single-trial EEG. J Neural Eng. 2018; 15 (6): 066030. DOI: 10.1088/1741- 2552/aae4b8.
  9. Daly I, Billinger M, Laparra-Hernández J, Aloise F, Lloria García M, Faller J, et al. On the control of brain-computer interfaces by users with cerebral palsy. Clin Neurophysiol. 2013; 124 (9): 1787–97.
  10. Kim T-W, Lee B-H. Clinical usefulness of brain-computer interface-controlled functional electrical stimulation for improving brain activity in children with spastic cerebral palsy: a pilot randomized controlled trial. J Phys Ther Sci. 2016; 28 (9): 2491–4.
  11. Larina NV, Korsunskaya LL, Vlasenko SV. The “Exo hand-2” complex in the rehabilitation of the upper limb in cerebral palsy using the non-invasive interface “brain-computer”. Neuromuscular diseases. 2019; 11 (4): 12–20. Russian.
  12. Bazanova OM, Vernon D. Interpreting EEG alpha activity. Neurosci Biobehav Rev. 2014; 44: 94–110.
  13. Pfurtscheller G, Brunner C, Schlögl A, Lopes da Silva FH. Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. NeuroImage. 2006; 31 (1): 153–9.
  14. Llanos C, Rodriguez M, Rodriguez-Sabate C, Morales I, Sabate M. Mu-rhythm changes during the planning of motor and motor imagery actions. Neuropsychologia. 2013; 51 (6): 1019–26.
  15. Klimesch W. Alpha-band oscillations, attention, and controlled access to stored information. Trends Cogn Sci. 2012; 16 (12): 606–17.
  16. Kotov SV, Romanova MV, Kondur AA, Biryukova EV, Frolov AA, Turbina LG i dr. Reorganizacija biojelektricheskoj aktivnosti neokorteksa posle insul'ta v rezul'tate reabilitacii s ispol'zovaniem interfejsa «mozg–komp'juter», upravljajushhego jekzoskeletom kisti. Zhurnal vysshej nervnoj dejatel'nosti im. I. P. Pavlova. 2020; 70 (2): 217–30. Russian.
  17. Bobrov PD, Korshakov AV, Roshhin VYu, Frolov AA. Bajesovskij podhod k realizacii interfejsa mozg–komp'juter, osnovannogo na predstavlenii dvizhenij. Zhurnal vysshej nervnoj dejatel'nosti im. I. P. Pavlova. 2012; 62 (1): 89–99. Russian.
  18. Shin YK, Lee DR, Hwang HJ, You SJ, Im CH. A novel EEG-based brain mapping to determine cortical activation patterns in normal children and children with cerebral palsy during motor imagery tasks. Neurorehabilitation. 2012; 31 (4): 349–55.
  19. Inuggi A, Bassolino M, Tacchino C, Pippo V, Bergamaschi V, Campus C, et al. Ipsilesional functional recruitment within lower mu band in children with unilateral cerebral palsy, an event-related desynchronization study. Exp Brain Res. 2018; 236 (2): 517–27.
  20. Démas J, Bourguignon M, Périvier M, De Tiège X, Dinomais M, Van Bogaert P. Mu rhythm: State of the art with special focus on cerebral palsy. Annals of Physical and Rehabilitation Medicine [Internet]. 2019 June [cited 2019 July 9]. Available from: https:// doi.org/10.1016/j.rehab.2019.06.007.
  21. Weinstein M, Green D, Rudisch J, Benthem M, Zielinski IM, Jongsma MLA, et al. Understanding the relationship between brain and upper limb function in children with unilateral motor impairments: A multimodal approach. Eur J Paediatr Neurol. 2018; 22 (1): 143–54.
  22. Koessler L, Maillard L, Benhadid A, Vignal JP, Felblinger J, Vespignani H, et al. Automated cortical projection of EEG sensors: Anatomical correlation via the international 10–10 system. NeuroImage. 2009; 46 (1): 64–72.
  23. Cavanna AE, Trimble MR. The precuneus: a review of its functional anatomy and behavioural correlates. Brain. 2006; 12 (30): 564–83.