ORIGINAL RESEARCH

Rehabilitation of patients with cerebral palsy using hand exoskeleton controlled by brain-computer interface

Bobrov PD1,2, Biryukova EV1,2, Polyaev BA1, Lajsheva OA1,3, Usachjova EL3, Sokolova AV3, Mikhailova DI3, Dement'eva KN3, Fedotova IR2
About authors

1 Pirogov Russian National Research Medical University, Moscow, Russia

2 Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia

3 Russian Children's Clinical Hospital of Pirogov Russian National Research Medical University, Moscow, Russia

Correspondence should be addressed: Pavel D. Bobrov
Ostrovitianova, 1, Moscow, 117997; ur.xednay@vorbob-p

About paper

Funding: the study was supported by the Ministry of Science and Higher Education of the Russian Federation, project № RFMEFI60519X0184.

Author contribution: Bobrov PD — EEG processing and analysis, BCI accuracy estimation, manuscript writing; Biryukova EV — assessment scales scores statistical processing, manuscript writing; Polyaev BA, Lajsheva OA, Usachjova EL — clinical trial design; Usachjova EL — clinical trial management; Lajsheva OA, Sokolova AV, Mihailova DI, Dement’eva KN — development of methods for working with children, clinical data acquisition; Mihailova DI, Dement'eva KN — neuropsychological testing, training; Fedotova IR — literature analysis. All authors contributed to interpretation of the results and discussion.

Received: 2020-07-31 Accepted: 2020-08-13 Published online: 2020-08-20
|
  1. Himmelmann K, Hagberg G, Uvebrant PAP. The changing panorama of cerebral palsy in Sweden. X. Prevalence and origin in the birth-year period 1999–2002. Acta Paediatrica. 2010; 99 (9): 1337–43.
  2. Semenova KA. Vosstanovitel'noe lechenie detej s perinatal'nym porazheniem nervnoj sistemy i detskim cerebral'nym paralichom. M.: Izd-vo «Zakon i porjadok», 2007; 616 s. Russian.
  3. Frolov AA, Husek D, Biryukova EV, Bobrov PD, Mokienko OA, Alexandrov AV. Principles of motor recovery in post-stroke patients using hand exoskeleton controlled by the brain-computer interface based on motor imagery. Neural Network World. 2017; 27 (1): 107–37.
  4. Pfurtscheller G, Lopes da Silva FH. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clinical Neurophysiology. 1999; 110 (11): 1842–57. Epub 1999/11/27. PubMed PMID: 10576479.
  5. Hétu S, Gregoire M, Saimpont A, Coll M-P, Eugene F, Michon P-E, et al. The neural network of motor imagery: an ALE meta-analysis. Neuroscience & Biobehavioral Reviews. 2013; 37 (5): 930–49.
  6. Monge-Pereira E, Ibañez-Pereda J, Alguacil-Diego I, Serrano J, Spottorno-Rubio M, Molina-Rueda F. Use of Electroencephalography Brain-Computer Interface Systems as a Rehabilitative Approach for Upper Limb Function After a Stroke: A Systematic Review. PM&R. 2017; 9 (9): 918–32.
  7. Ang KK, Chua KSG, Phua KS, Wang C, Chin ZY, Kuah CWK, et al. A randomized controlled trial of EEG-based motor imagery brain-computer interface robotic rehabilitation for stroke. Clinical EEG and neuroscience. 2015; 46 (4): 310–20.
  8. Frolov AA, Mokienko O, Lyukmanov R, Biryukova E, Kotov S, Turbina L, et al. Post-stroke rehabilitation training with a motor-imagery-based brain-computer interface (BCI)-controlled hand exoskeleton: a randomized controlled multicenter trial. Frontiers in neuroscience. 2017; 11: 400.
  9. Ono T, Shindo K, Kawashima K, Ota N, Ito M, Ota T, et al. Brain-computer interface with somatosensory feedback improves functional recovery from severe hemiplegia due to chronic stroke. Frontiers in neuroengineering. 2014; 7: 19.
  10. Ramos-Murguialday A, Broetz D, Rea M, Läer L, Yilmaz Ö, Brasil FL, et al. Brain–machine interface in chronic stroke rehabilitation: a controlled study. Annals of neurology. 2013; 74 (1): 100–8.
  11. Eyre JA. Corticospinal tract development and its plasticity after perinatal injury. Neuroscience & Biobehavioral Reviews. 2007; 31 (8): 1136–49.
  12. Thelen E. Developmental ‘movement disorders’ and problem solving. In: What are ‘normal movements’ in atypical populations? Behavioral and Brain Sciences. 1996; 19 (1): 55–106.
  13. Allred RP, Jones TA. Maladaptive effects of learning with the less-affected forelimb after focal cortical infarcts in rats. Experimental Neurology. 2008; 210 (1): 172–81.
  14. Duarte NAC, Grecco LAC, Zanon N, Galli M, Fregni F, Oliveira CS. Motor сortex plasticity in children with spastic cerebral palsy: a systematic review. Journal of Motor Behavior. 2016; 49 (4): 1–10.
  15. Spruijt S, van der Kamp J, Steenbergen B. The ability of 6– to 8– year-old children to use motor imagery in a goal-directed pointing task. Journal of Experimental Child Psychology. 2015; 139: 221–33.
  16. Lust JM, Wilson PH, Steenbergen B. Motor imagery difficulties in children with cerebral palsy: A specific or general deficit? Research in Developmental Disabilities. 2016; 57: 102–11.
  17. Cabral-Sequeira AS, Coelho DB, Teixeira L. Motor imagery training promotes motor learning in adolescents with cerebral palsy: comparison between left and right hemiparesis. Experimental Brain Research. 2016; 234 (6): 1515–24.
  18. Errante A, Bozzetti F, Sghedoni S, Bressi B, Costi S, Crisi G, et al. Explicit motor imagery for grasping actions in children with spastic unilateral cerebral palsy Frontiers in neurology. 2019; 10: 837.
  19. Bobrov PD, Korshakov AV, Roshhin VYu, Frolov AA. Bajesovskij podhod k realizacii interfejsa mozg–komp'juter, osnovannogo na predstavlenii dvizhenij. Zhurnal vysshej nervnoj dejatel'nosti. 2012; 62 (1): 89–99. Russian.
  20. Palmer JA, Kreutz-Delgado K, Makeig S. AMICA: An adaptive mixture of independent component analyzers with shared components. Swartz Center for Computatonal Neursoscience, University of California San Diego, Tech Rep. 2012.
  21. Delorme A, Palmer J, Onton J, Oostenveld R, Makeig S. Independent EEG sources are dipolar. PloS one. 2012; 7 (2): e30135.
  22. Frolov A, Bobrov P, Biryukova E, Isaev M, Kerechanin Y, Bobrov D, et al. Using Multiple Decomposition Methods and Cluster Analysis to Find and Categorize Typical Patterns of EEG Activity in Motor Imagery Brain–Computer Interface Experiments. Frontiers in Robotics and AI. 2020; 7 (88). DOI: 10.3389/frobt.2020.00088.
  23. Van Hoey G, Van de Walle R, Vanrumste B, D’Havse M, Lemahieu I, Boon P. Beamforming techniques applied in EEG source analysis. Proc ProRISC99. 1999; 10: 545–9.
  24. Crognier L, Skoura X, Vinter A, Papaxanthis C. Mental representation of arm motion dynamics in children and adolescents. PloS one. 2013; 8: e73042.
  25. Frolov A, Aziatskaya G, Bobrov P, Ljukmanov R, Fedotova I, Gusek D, i dr. Jelektrofiziologicheskaja aktivnost' mozga pri upravlenii interfejsom mozg-komp'juter, osnovannym na voobrazhenii dvizhenij. Fiziologija cheloveka. 2017; 43 (5): 17–28. Russian.
  26. Klingels K, Demeyere I, Jaspers E, De Cock P, Molenaers G, Boyd R, et al. Upper limb impairments and their impact on activity measures in children with unilateral cerebral palsy. European Journal of Paediatric Neurology. 2012; 16 (5): 475–84.
  27. Gladstone DJ, Daniells CJ, Black SE. The Fugl-Meyer assessment of motor recovery after stroke: A critical review of its measurement properties. Neurorehabilitation and Neural Repair. 2002; 16 (232– 240).
  28. Sunderland A. Recovery of ipsilateral dexterity after strok. Stroke. 2000; 31 (2): 430–3.
  29. Alt Murphy MA, Häger CK. Kinematic analysis of the upper extremity after stroke — how far have we reached and what have we grasped? Physical Therapy Reviews. 2015; 20: 137–55.
  30. Mailleux L, Simon-Martinez C, Feys H, Jaspers E. Upper extremity movement pathology during functional tasks. In: Müller B, Wolf S, editors. Handbook of Human Motion. Cham: Springer International Publishing AG, 2018; p. 1167–1184.