REVIEW

Antiviral system of innate immunity: COVID-19 pathogenesis and treatment

About authors

Pirogov Russian National Research Medical University, Moscow, Russia

Correspondence should be addressed: Alexander N. Kazimirskii
Ostrovityanova, 1, Moscow, 117437; ur.liam@01acinla

About paper

Author contribution: the authors contributed equally to all aspects of the article.

Received: 2020-08-31 Accepted: 2020-09-13 Published online: 2020-09-21
|
  1. Cai X, Xu H, Chen ZJ. Prion-Like Polymerization in Immunity and Inflammation. Cold Spring Harb Perspect Biol. 2017; 9 (4). pii: a023580. DOI: 10.1101/cshperspect.a023580.
  2. He X, Zhu Y, Zhang Y, Geng Y, Gong J, Geng J, et al. RNF34 functions in immunity and selective mitophagy by targeting MAVS for autophagic degradation. EMBO J. 2019. pii: e100978. DOI: 10.15252/embj.2018100978.
  3. Cai X, Chen J, Xu H, Liu S, Jiang QX, Halfmann R, et al. Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation. Cell. 2014; 156 (6): 1207– 2. DOI: 10.1016/j.cell.2014.01.063.
  4. Cai X, Xu H, Chen ZJ. Prion-Like Polymerization in Immunity and Inflammation. Cold Spring Harb Perspect Biol. 2017; 9 (4). pii: a023580. DOI: 10.1101/cshperspect.a023580.
  5. Dutta M, Robertson SJ, Okumura A, Scott DP, Chang J, Weiss JM, et al. A Systems Approach Reveals MAVS Signaling in Myeloid Cells as Critical for Resistance to Ebola Virus in Murine Models of Infection. Cell Rep. 2017; 18 (3): 816–29. DOI: 10.1016/j. celrep.2016.12.069.
  6. Hu Y, Dong X, He Z, Wu Y, Zhang S, Lin J, et al. Zika virus antagonizes interferon response in patients and disrupts RIG-I-MAVS interaction through its CARD-TM domains. Cell Biosci. 2019; 9: 46. DOI: 10.1186/s13578-019-0308-9. eCollection 2019.
  7. Hu X, Peng X, Lu C, Zhang X, Gan L, Gao Y, et al. Type I IFN expression is stimulated by cytosolic MtDNA released from pneumolysin-damaged mitochondria via the STING signaling pathway in macrophages. FEBS J. 2019. DOI: 10.1111/febs.15001.
  8. Liu S, Cai X, Wu J, Cong Q, Chen X, Li T, et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science. 2015; 347 (6227): aaa2630. DOI: 10.1126/science.aaa2630.
  9. Diner EJ, Burdette DL, Wilson SC, Monroe KM, Kellenberger CA, Hyodo M, et al. The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. Cell Rep. 2013; 3 (5): 1355–61. DOI: 10.1016/j.celrep.2013.05.009.
  10. Schwede F, Genieser HG, Rentsch A. The Chemistry of the Noncanonical Cyclic Dinucleotide 2'3'-cGAMP and Its Analogs. Handb Exp Pharmacol. 2017; 238: 359–84. DOI: 10.1007/164_2015_43.
  11. Eaglesham JB, Pan Y, Kupper TS, Kranzusch PJ. Viral and metazoan poxins are cGAMP-specific nucleases that restrict cGAS-STING signalling. Nature. 2019; 566 (7743): 259–63. DOI: 10.1038/s41586-019-0928-6.
  12. Oh DS, Kim TH, Lee HK. Differential Role of Anti-Viral Sensing Pathway for the Production of Type I Interferon — in Dendritic Cells and Macrophages Against Respiratory Syncytial Virus A2 Strain Infection. Viruses. 2019; 11 (1). pii: E62. DOI: 10.3390/ v11010062.
  13. Goritzka M, Makris S, Kausar F, Durant LR, Pereira C, Kumagai Y, et al. Alveolar macrophage-derived type I interferons orchestrate innate immunity to RSV through recruitment of antiviral monocytes. J Exp Med. 2015 May 4; 212 (5): 699–714. DOI: 10.1084/jem.20140825.
  14. Goritzka M, Pereira C, Makris S, Durant LR, Johansson C. T cell responses are elicited against Respiratory Syncytial Virus in the absence of signalling through TLRs, RLRs and IL-1R/IL-18R. Sci Rep. 2015 Dec 21; 5: 18533. DOI: 10.1038/srep18533.
  15. Sturge CR, Benson A, Raetz M, Wilhelm CL, Mirpuri J, Vitetta ES, et al. TLR-independent neutrophil-derived IFN-γ is important for host resistance to intracellular pathogens. Proc Natl Acad Sci USA. 2013; 110 (26): 10711–6. DOI: 10.1073/pnas.1307868110.
  16. Kirsebom FCM, Kausar F, Nuriev R, Makris S, Johansson C. Neutrophil recruitment and activation are differentially dependent on MyD88/TRIF and MAVS signaling during RSV infection. Mucosal Immunol. 2019. DOI: 10.1038/s41385-019-0190-0.
  17. Gonzalez-Quintial R, Nguyen A, Kono DH1, Oldstone MBA, Theofilopoulos AN, Baccala R. Lupus acceleration by a MAVS-activating RNA virus requires endosomal TLR signaling and host genetic predisposition. PLoS One. 2018; 13 (9): e0203118. DOI: 10.1371/journal.pone.0203118. eCollection 2018.
  18. Lei Y, Moore CB, Liesman RM, O'Connor BP, Bergstralh DT, Chen ZJ, et al. MAVS-mediated apoptosis and its inhibition by viral proteins. PLoS One. 2009; 4 (5): e5466. DOI: 10.1371/journal. pone.0005466.
  19. El Maadidi S, Faletti L, Berg B, Wenzl C, Wieland K, Chen ZJ, et al. A novel mitochondrial MAVS/Caspase-8 platform links RNA virus-induced innate antiviral signaling to Bax/Bak-independent apoptosis. J Immunol. 2014; 192 (3): 1171–83. DOI: 10.4049/ jimmunol.1300842.
  20. Dong W, Lv H, Li C, Liu Y, Wang C, Lin J, et al. MAVS induces a host cell defense to inhibit CSFV infection. Arch Virol. 2018 Jul; 163 (7): 1805–21. DOI: 10.1007/s00705-018-3804-z.
  21. Hirai-Yuki A, Whitmire JK, Joyce M, Tyrrell DL, Lemon SM. Murine Models of Hepatitis A Virus Infection. Cold Spring Harb Perspect Med. 2019; 9 (1). pii: a031674. DOI: 10.1101/cshperspect. a031674.
  22. Liu D, Tan Q, Zhu J, Zhang Y, Xue Y, Song Y, et al. MicroRNA-33/33* inhibit the activation of MAVS through AMPK in antiviral innate immunity. Cell Mol Immunol. 2019. DOI: 10.1038/s41423-019- 0326-x.
  23. Yang S, Harding AT, Sweeney C, Miao D, Swan G, Zhou C, et al. Control of antiviral innate immune response by protein geranylgeranylation. Sci Adv. 2019; 5 (5): eaav7999. DOI: 10.1126/sciadv.aav7999.
  24. Maugeri N, Rovere-Querini P, Evangelista V, Covino C, Capobianco A, Bertilaccio MT, et al. Neutrophils phagocytose activated platelets in vivo: a phosphatidylserine, P-selectin and {beta}2 integrin-dependent cell clearance program. Blood. 2009; 113: 5254–65. DOI: 10.1182/blood-2008-09-180794.
  25. Manfredi AA, Covino C, Rovere-Querini P, Maugeri N. Instructive influences of phagocytic clearance of dying cells on neutrophil extracellular trap generation. Clin Exp Immunol. 2015; 179 (1): 24–9. DOI: 10.1111/cei.12320.
  26. Ma R, Xie R, Yu C, Si Y, Wu X, Zhao L, et al. Phosphatidylserine-mediated platelet clearance by endothelium decreases platelet aggregates and procoagulant activity in sepsis. Sci Rep. 2017; 7 (1): 4978. DOI: 10.1038/s41598-017-04773-8.
  27. Manfredi AA, Ramirez GA, Rovere-Querini P, Maugeri N. The Neutrophil's Choice: Phagocytose vs Make Neutrophil Extracellular Traps. Front Immunol. 2018; 9: 288. DOI: 10.3389/ fimmu.2018.00288. eCollection 2018.
  28. Strumwasser A, Bhargava A, Victorino GP. Attenuation of Endothelial Phosphatidylserine Exposure Decreases Ischemia- Reperfusion Induced Changes in Microvascular Permeability. J Trauma Acute Care Surg. 2018; 84 (6): 838–46. DOI: 10.1097/ TA.0000000000001891.
  29. Tong D, Yu M, Li G, Li T, Li J, Novakovic VA, et al. Phosphatidylserine-exposing Blood and Endothelial Cells Contribute to the Hypercoagulable State in Essential Thrombocythemia Patients. Ann Hematol. 2018; 97 (4): 605–16. DOI: 10.1007/s00277-018- 3228-6.
  30. Laridan E, Martinod K, De Meyer SF. Neutrophil Extracellular Traps in Arterial and Venous Thrombosis. Semin Thromb Hemost. 2019; 45 (1): 86–93. DOI: 10.1055/s-0038-1677040.
  31. Li B, Liu Y, Hu T, Zhang Y, Zhang C, Li T, et al. Neutrophil Extracellular Traps Enhance Procoagulant Activity in Patients With Oral Squamous Cell Carcinoma. J Cancer Res Clin Oncol. 2019; 145 (7): 1695–707. DOI: 10.1007/s00432-019-02922-2.
  32. Becker RC. COVID-19 Update: Covid-19-associated Coagulopathy. J Thromb Thrombolysis. 2020; 1–14. DOI: 10.1007/s11239-020-02134-3.
  33. Barnes BJ, Adrover JM, Baxter-Stoltzfus A, Borczuk A, Cools- Lartigue J, Crawford JM, et al. Targeting Potential Drivers of COVID-19: Neutrophil Extracellular Traps. J Exp Med. 2020; 217 (6): e20200652. DOI: 10.1084/jem.20200652.
  34. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of Immune Response in Patients With COVID-19 in Wuhan, China Clin Infect Dis. 2020; ciaa248. DOI: 10.1093/cid/ciaa248.
  35. Kazimirskii AN, Poryadin GV, Salmasi JM. The mechanisms of development of immunodeficiency in non-specific inflammation of infectious origin. Pathological physiology and experimental therapy. 2003; 3: 23. Russian.
  36. Poryadin GV, Salmasi JM, Kazimirskii AN. Activation markers of lymphocytes as indicators of dysregulation of the immune system during inflammation. Pathological physiology and experimental therapy. 2006; 1: 2–7. Russian.
  37. Salmasi JM, Kazimirskii AN, Poryadin GV. The leading mechanisms of pathogenesis in inflammation of various origins. Russian Immunological Journal. 2019; 13-22 (2): 518–20. Russian.
  38. Zhang L, Pang R, Xue X, Bao J, Ye S, Dai Y, et al. Anti-SARS-CoV-2 Virus Antibody Levels in Convalescent Plasma of Six Donors Who Have Recovered From COVID-19 Aging (Albany NY). 2020; 12 (8): 6536–42. DOI: 10.18632/aging.103102.
  39. Guo L, Ren L, Yang S, Xiao M, Chang D, Yang F, et al. Profiling Early Humoral Response to Diagnose Novel Coronavirus Disease (COVID-19). Clin Infect Dis. 2020; ciaa310. DOI: 10.1093/cid/ ciaa310.
  40. Lee Y-L, Liao C-H, Liu P-Y, Cheng C-Y, Chung M-Y, Liu C-E, et al. Dynamics of anti-SARS-Cov-2 IgM and IgG Antibodies Among COVID-19 Patients. J Infect. 2020; S0163-4453(20)30230-9. DOI: 10.1016/j.jinf.2020.04.019.
  41. Kazimirskii AN, Poryadin GV, Salmasi JM, Semenova LY. Endogenous regulators of the immune system (sCD100, malonic dialdehyde, and arginase). Bulletin of Experimental Biology and Medicine. 2018; 164 (5): 693–700. DOI: 10.1007/s10517-018- 4061-6.
  42. Kazimirskii AN, Salmasi JM, Poryadin GV. Coordination of Innate and Adaptive Immunity Depending on Neutrophilic Extracellular Traps Formation. Austin J Clin Immunol. 2019; 6 (1): 1037.
  43. Kazimirskii AN, Salmasi JM, Poryadin GV. Neutrophil extracellular traps regulate the development of innate and adaptive immune system. Russian Medical Review. 2020; 4 (1): 38–41. DOI: 10.32364/2587-6821-2020-4-1-38-41. Russian.
  44. Imai K, Tabata S, Ikeda M, Noguchi S, Kitagawa Y, Matuoka M, et al. Clinical Evaluation of an Immunochromatographic IgM/ IgG Antibody Assay and Chest Computed Tomography for the Diagnosis of COVID-19. J Clin Virol. 2020; 128: 104393. DOI: 10.1016/j.jcv.2020.104393.
  45. Hu Z, Song C, Xu C, Jin G, Chen Y, Xu X, et al. Clinical Characteristics of 24 Asymptomatic Infections With COVID-19 Screened Among Close Contacts in Nanjing, China. Sci China Life Sci. 2020; 63 (5): 706–11. DOI: 10.1007/s11427-020-1661-4.
  46. Baettig SJ, Parini A, Cardona I, Morand GB. Case Series of Coronavirus (SARS-CoV-2) in a Military Recruit School: Clinical, Sanitary and Logistical Implications. BMJ Mil Health. 2020; DOI: 10.1136/bmjmilitary-2020-001482.
  47. Rozières A, Viret C, Faure M. Autophagy in Measles Virus Infection. Viruses. 2017; 9 (12): 359. DOI: 10.3390/v9120359.
  48. Mohamud Y, Shi J, Qu J, Poon T, Xue YC, Deng H, et al. Enteroviral Infection Inhibits Autophagic Flux via Disruption of the SNARE Complex to Enhance Viral Replication. Cell Rep. 2018; 22 (12): 3292–303. DOI: 10.1016/j.celrep.2018.02.090.
  49. Lai JKF, Sam I-C, Verlhac P, Baguet J, Eskelinen E-L, Faure M, et al. 2BC Non-Structural Protein of Enterovirus A71 Interacts With SNARE Proteins to Trigger Autolysosome Formation Viruses. 2017; 9 (7): 169. DOI: 10.3390/v9070169.
  50. Peng H, Liu B, Yves TD, He Y, Wang S, Tang H, et al. Zika Virus Induces Autophagy in Human Umbilical Vein Endothelial Cells. Viruses. 2018; 10 (5): 259. DOI: 10.3390/v10050259.
  51. Gratton R, Agrelli A, Tricarico PM, Brandão L, Crovella S. Autophagy in Zika Virus Infection: A Possible Therapeutic Target to Counteract Viral Replication. Int J Mol Sci. 2019; 20 (5): 1048. DOI: 10.3390/ijms20051048.
  52. Blázquez A-B, Escribano-Romero E, Merino-Ramos T, Saiz J-C, Martín-Acebes MA. Infection With Usutu Virus Induces an Autophagic Response in Mammalian Cells. PLoS Negl Trop Dis. 2013; 7 (10): e2509. DOI: 10.1371/journal.pntd.0002509.
  53. Lee N-R, Ban J, Lee N-J, Yi C-M, Choi J-Y, Kim H, et al. Activation of RIG-I-Mediated Antiviral Signaling Triggers Autophagy Through the MAVS-TRAF6-Beclin-1 Signaling Axis. Front Immunol. 2018 Sep 12; 9: 2096. DOI: 10.3389/fimmu.2018.02096.
  54. Silva LM, Jung JU. Modulation of the Autophagy Pathway by Human Tumor Viruses. Semin Cancer Biol. 2013; 23 (5): 323–8. DOI: 10.1016/j.semcancer.2013.05.005.
  55. Green DR, Llambi F. Cell Death Signaling Cold Spring Harb Perspect Biol. 2015; 7 (12): a006080. DOI: 10.1101/cshperspect. a006080.
  56. Nishida K, Tamura A, Yui N. ER Stress-Mediated Autophagic Cell Death Induction Through Methylated β-Cyclodextrins-Threaded Acid-Labile Polyrotaxanes. J Control Release. 2018; 275: 20–31. DOI: 10.1016/j.jconrel.2018.02.010.
  57. Wang Y, Jiang K, Zhang Q, Meng S, Ding C. Autophagy in Negative-Strand RNA Virus Infection. Front Microbiol. 2018; 9: 206. DOI: 10.3389/fmicb.2018.00206.
  58. Müller-Quernheim UC, Potthast L, Müller-Quernheim J, Zissel G. Tumor-cell Co-Culture Induced Alternative Activation of Macrophages Is Modulated by Interferons in Vitro. J Interferon Cytokine Res. 2012; 32 (4): 169–77. DOI: 10.1089/jir.2011.0020.
  59. Tarique AA, Logan J, Thomas E, Holt PG, Sly PD, Fantino E. Phenotypic, Functional, and Plasticity Features of Classical and Alternatively Activated Human Macrophages. Am J Respir Cell Mol Biol. 2015; 53 (5): 676–88. DOI: 10.1165/rcmb.2015-0012OC.
  60. Yang Y, Huang X, Chen S, Ma G, Zhu M, Yan F, Yu J. Resveratrol Induced Apoptosis in Human Gastric Carcinoma SGC-7901 Cells via Activation of Mitochondrial Pathway. Asia Pac J Clin Oncol. 2018; 14 (5): e317–e324. DOI: 10.1111/ajco.12841.
  61. Wang D, Gao Z, Zhang X. Resveratrol Induces Apoptosis in Murine Prostate Cancer Cells via Hypoxia-Inducible Factor 1-alpha (HIF-1α)/Reactive Oxygen Species (ROS)/P53 Signaling. Med Sci Monit. 2018; 24: 8970–6. DOI: 10.12659/MSM.913290.
  62. Li C, Hu W-L, Lu M-X, Xiao G-F. Resveratrol Induces Apoptosis of Benign Prostatic Hyperplasia Epithelial Cell Line (BPH-1) Through p38 MAPK-FOXO3a Pathway BMC Complement Altern Med. 2019; 19 (1): 233. DOI: 10.1186/s12906-019-2648-8.