ORIGINAL RESEARCH

Effect of neuromodulation on neurotrophic factors in patients with chronic disorders of consciousness

Iazeva EG, Legostaeva LA, Bakulin IS, Poydasheva AG, Abaimov DA, Suponeva NA, Shabalina AA, Ryabinkina YuV, Piradov MA
About authors

Research Center of Neurology, Moscow, Russia

Correspondence should be addressed: Elizaveta G. Iazeva
Volokolamskoye shosse, 80, Moscow, 125367; ur.ygoloruen@avezay

About paper

Funding: the study was supported by Russian Science Foundation (RSF) grant 16-15-00274.

Compliance with ethical standards: the study was approved by the Ethics Committee of the Research Center of Neurology (protocol No. 9-5.16 dated October 26, 2016). Patients were included in the study after obtaining the informed consent from their legal representatives.

Author contribution: Iazeva EG — clinical practice, clinical assessment, collecting biomaterials, manuscript writing; Legostaeva LA — clinical practice, clinical assessment, collecting biomaterials; Bakulin IS, Poydasheva AG — рТМС, manuscript writing; Abaimov DA, Shabalina AA — laboratory tests; Suponeva NA, Ryabinkina YV, Piradov MA — study planning and management.

Received: 2020-08-19 Accepted: 2020-09-05 Published online: 2020-09-24
|
  1. Giacino JT, Ashwal S, Childs N, Cranford R, Jennett B, Katz DI, et al. The minimally conscious state: definition and diagnostic criteria. Neurology. 2002; 58 (3): 349–53. DOI: 10.1212/WNL.58.3.349.
  2. Turner-Stokes L, Wade D, Playford D, Kitzinger J, Allanson J, Pundole A, et al. Prolonged disorders of consciousness guidelines. London, 2020.
  3. Giacino JT, Katz DI, Schiff ND, Whyte J, Ashman EJ, Ashwal S, et al. Practice guideline update recommendations summary: Disorders of consciousness. Neurology. 2018; 91 (10): 450–60. DOI: 10.1212/WNL.0000000000005926.
  4. Piradov МА, Suponeva NА, Vosnyuk IА, Kondratyev АN, Scshegolev АV, Belkin АА, et al. Chronic disorders of consciousness: terminology and diagnostic criteria. The results of the first meeting of the Russian Working Group for Chronic Disorders of Consciousness. Annals of clinical and experimental neurology. 2020; 14 (1): 5–16. DOI: 10.25692/ACEN.2020.1.1. Russian.
  5. Thibaut A, Schiff N, Giacino J, Laureys S, Gosseries O. Therapeutic interventions in patients with prolonged disorders of consciousness. The Lancet Neurology. 2019; 18 (6): 600–14. DOI: 10.1016/S1474-4422(19)30031-6.
  6. Skaper SD. Neurotrophic factors: An overview. Methods in Molecular Biology. 2018. DOI: 10.1007/978-1-4939-7571-6_1.
  7. Ye JH, Houle JD. Treatment of the chronically injured spinal cord with neurotrophic factors can promote axonal regeneration from supraspinal neurons. Experimental Neurology. 1997. DOI: 10.1006/exnr.1996.6353.
  8. Chen Q, Zhou L, Shine HD. Expression of neurotrophin-3 promotes axonal plasticity in the acute but not chronic injured spinal cord. Journal of Neurotrauma. 2006. DOI: 10.1089/neu.2006.23.1254.
  9. Pascual A, Hidalgo-Figueroa M, Gómez-Díaz R, López-Barneo J. GDNF and protection of adult central catecholaminergic neurons. Journal of Molecular Endocrinology. 2011. DOI: 10.1530/JME- 10-0125.
  10. Sil S, Periyasamy P, Thangaraj A, Chivero ET, Buch S. PDGF/ PDGFR axis in the neural systems. Molecular Aspects of Medicine. 2018. DOI: 10.1016/j.mam.2018.01.006.PMID:29409855.
  11. Daubin C, Quentin C, Allouche S, Etard O, Gaillard C, Seguin A, et al. Serum neuron-specific enolase as predictor of outcome in comatose cardiac-arrest survivors: a prospective cohort study. BMC Cardiovasc Disord. 2011; 11: 48. DOI: 10.1186/1471- 2261-11-48.
  12. Pfeifer R, Borner A, Krack A, Sigusch HH, Surber R, Figulla HR. Outcome after cardiac arrest: predictive values and limitations of the neuroproteins neuron-specific enolase and protein S-100 and the Glasgow Coma Scale. Resuscitation. 2005; 65 (1): 49–55. DOI: 10.1016/j.resuscitation.2004.10.011.
  13. Gaede G, Hellweg R, Zimmermann H, Brandt AU, Dorr J, Bellmann-Strobl J, et al. Effects of deep repetitive transcranial magnetic stimulation on brain-derived neurotrophic factor serum concentration in healthy volunteers. Neuropsychobiology. 2014; 69 (2): 112–9. DOI: 10.1159/000358088.
  14. Lee JY, Park HJ, Kim JH, Cho BP, Cho SR, Kim SH. Effects of low-and high-frequency repetitive magnetic stimulation on neuronal cell proliferation and growth factor expression: A preliminary report. Neurosci Lett. 2015; 604: 167–72. DOI: 10.1016/j. neulet.2015.07.038.
  15. Takahashi T. Monoamines, monoamine metabolites, neuron specific enolase and myelin basic protein concentrations in cerebrospinal fluid of resuscitated patients. Nihon Shinkei Seishin Yakurigaku Zasshi. 1997; 17 (1): 7–16.
  16. Suponeva NA, Bakulin IS, Pojdasheva AG, Piradov MA. Bezopasnost' transkranial'noj magnitnoj stimuljacii: obzor mezhdunarodnyh rekomendacij i novye dannye. Nervno-myshechnye bolezni. 2017; 7 (2): 21–36.
  17. Iazeva EG, Legostaeva LA, Zimin AA, Sergeev DV, Domashenko MA, Samorukov VY, et al. A Russian validation study of the Coma Recovery Scale-Revised (CRS-R). Brain Injury. 2019. DOI: 10.1080/02699052.2018.1539248.
  18. Legostaeva L, Poydasheva A, Iazeva E, Sinitsyn D, Sergeev D, Bakulin I, et al. Stimulation of the angular gyrus improves the level of consciousness. Brain Sciences. 2019; 9 (5). DOI: 10.3390/ brainsci9050103.
  19. Karakulova YV, Selyanina NV. Monitoring of neurotrophic factors and cognitive function in patients with traumatic brain injury. Zh Nevrol Psikhiatr im S. S. Korsakova. 2017;117(10):34-37. doi:10.17116/jnevro201711710134-37.
  20. Mokhtarzade M, Motl R, Negaresh R, Zimmer P, Khodadoost M, Baker JS, et al. Exercise-induced changes in neurotrophic factors and markers of blood-brain barrier permeability are moderated by weight status in multiple sclerosis. Neuropeptides. 2018. DOI: 10.1016/j.npep.2018.05.010.PMID:29880392.
  21. King M, Kelly LP, Wallack EM, Hasan SMM, Kirkland MC, Curtis ME, et al. Serum levels of insulin-like growth factor-1 and brain-derived neurotrophic factor as potential recovery biomarkers in stroke. Neurological Research. 2019. DOI: 10.1080/01616412.2018.1564451.
  22. Xu L, Zhang Y, Zhang R, Zhang H, Song P, Ma T, et al. Elevated plasma BDNF levels are correlated with NK cell activation in patients with traumatic spinal cord injury. International Immunopharmacology. 2019. DOI: 10.1016/j.intimp.2019.105722.PMID:31255880.
  23. Sasaki M, Radtke C, Tan AM, Zhao P, Hamada H, Houkin K, et al. BDNF-hypersecreting human mesenchymal stem cells promote functional recovery, axonal sprouting, and protection of corticospinal neurons after spinal cord injury. Journal of Neuroscience. 2009. DOI: 10.1523/JNEUROSCI.2769-09.2009.
  24. Ritter C, Miranda AS, Giombelli VR, Tomasi CD, Comim CM, Teixeira AL, et al. Brain-derived neurotrophic factor plasma levels are associated with mortality in critically ill patients even in the absence of brain injury. Critical Care. 2012. DOI: 10.1186/ cc11902.
  25. Simon D, Do Nascimento RIM, Filho EMR, Bencke J, Regner A. Plasma brain-derived neurotrophic factor levels after severe traumatic brain injury. Brain Injury. 2016. DOI: 10.3109/02699052.2015.1077993.
  26. Giacino JT, Katz DI, Schiff ND, Whyte J, Ashman EJ, Ashwal S, et al. Comprehensive systematic review update summary: Disorders of consciousness: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology; The American Congress of Rehabilitation Medicine; and the National Institute on Disability, Independen. 2018; 91 (10): 461–470. DOI: 10.1016/j.apmr.2018.07.002
  27. Yukimasa T, Tamagawa A, Uozumi T, Shinkai K, Ueda N, Tsuji S, et al. High-frequency repetitive transcranial magnetic stimulation improves refractory depression by influencing catecholamine and brain-derived neurotrophic factors. Pharmacopsychiatry. 2006. DOI: 10.1055/s-2006-931542.
  28. Zanardini R, Gazzoli A, Ventriglia M, Perez J, Bignotti S, Maria Rossini P, et al. Effect of repetitive transcranial magnetic stimulation on serum brain derived neurotrophic factor in drug resistant depressed patients. Journal of Affective Disorders. 2006. DOI: 10.1016/j.jad.2005.12.029.
  29. Müller MB, Toschi N, Kresse AE, Post A, Keck ME. Long-term repetitive transcranial magnetic stimulation increases the expression of brain-derived neurotrophic factor and cholecystokinin mRNA, but not neuropeptide tyrosine mRNA in specific areas of rat brain. Neuropsychopharmacology. 2000. DOI: 10.1016/S0893-133X(00)00099-3.
  30. Jiang B, He D. Repetitive transcranial magnetic stimulation (rTMS) fails to increase serum brain-derived neurotrophic factor (BDNF). Neurophysiologie Clinique. 2019; 49 (4): 295–300. DOI: 10.1016/j.neucli.2019.05.068.