ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ

Теломеризованные фибробласты как потенциальный объект для 3D-моделирования патологических гипертрофических рубцов in vitro

В. С. Шадрин, П. М. Кожин, О. О. Шошина, Н. Г. Лузгина, А. Л. Русанов
Информация об авторах

Научно-исследовательский институт биомедицинской химии имени В. Н. Ореховича, Москва, Россия

Для корреспонденции: Валериан Сергеевич Шадрин
ул. Погодинская, д. 10, стр. 8, г. Москва, 119121; moc.liamg@nirdahsnairelav

Информация о статье

Финансирование: работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации в рамках ФЦП «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2014–2020 годы» (соглашение № 05.604.21.0219, Уникальный идентификатор проекта RFMEFI60419X0219).

Вклад авторов: Н. Г. Лузгина, А. Л. Русанов — концепция и дизайн исследования; В. С. Шадрин, П. М. Кожин, О. О. Шошина, Н. Г. Лузгина, А. Л. Русанов — анализ литературы, анализ и интерпретация полученных данных, редактирование рукописи; В. С. Шадрин, П. М. Кожин — планирование и проведение исследования; В. С. Шадрин — написание статьи.

Статья получена: 28.08.2020 Статья принята к печати: 02.09.2020 Опубликовано online: 27.09.2020
|
  1. Jumper N, Paus R, Bayat A. Functional histopathology of keloid disease. Histology and histopathology. 2015; 30 (9): 1033–57.
  2. Sidgwick GP, Bayat A. Extracellular matrix molecules implicated in hypertrophic and keloid scarring. Journal of the European Academy of Dermatology and Venereology. 2012; 26 (2): 141–152.
  3. Liang CJ, Yen YH, Hung LY, Wang SH, Pu CM, Chien HF, et al. Thalidomide inhibits fibronectin production in TGF-β1-treated normal and keloid fibroblasts via inhibition of the p38/Smad3 pathway. Biochemical pharmacology. 2013; 85 (11): 1594–02.
  4. De Felice B, Wilson RR, Nacca M. Telomere shortening may be associated with human keloids. BMC medical genetics. 2009; 10 (1): 110.
  5. Huang Y, Lin LX, Bi QX, Wang P, Wang XM, Liu J, et al. Effects of hTERT antisense oligodeoxynucleotide on cell apoptosis and expression of hTERT and bcl-2 mRNA in keloid fibroblasts. European Review for Medical and Pharmacological Sciences. 2017; 21 (8): 1944–51.
  6. Yu D, Shang Y, Yuan J, Ding S, Luo S, Hao L. Wnt/β-catenin signaling exacerbates keloid cell proliferation by regulating telomerase. Cellular Physiology and Biochemistry. 2016; 39 (5): 2001–13.
  7. Kischer CW, Thies AC, Chvapil M. Perivascular myofibroblasts and microvascular occlusion in hypertrophic scars and keloids. Human pathology. 1982; 13 (9): 819–24.
  8. Bran GM, Goessler UR, Hormann K, Riedel F, Sadick H. Keloids: current concepts of pathogenesis. International journal of molecular medicine. 2009; 24 (3): 283–93
  9. Chin D, Boyle GM, Parsons PG, Coman WB. What is transforming growth factor-beta (TGF-β)?. British journal of plastic surgery. 2004; 57 (3): 215–21.
  10. Yang GP, Lim IJ, Phan TT, Lorenz HP, Longaker MT. From scarless fetal wounds to keloids: molecular studies in wound healing. Wound repair and regeneration. 2003; 11 (6): 411–8.
  11. Jagadeesan J, Bayat A. Transforming growth factor beta (TGFβ) and keloid disease. International journal of surgery. 2007; 5 (4): 278–85.
  12. Egorov EE, Terekhov SM, Vishniakova K, Karachentsev DN, Kazimirchuk EV, Tsvetkova TG, et al. Telomerization as a method of obtaining immortal human cells preserving normal properties. Ontogenez. 2003; 34 (3): 183.
  13. Kupcsik L. Estimation of cell number based on metabolic activity: the MTT reduction assay. In Mammalian cell viability. Humana Press. 2011: 13–19.
  14. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nature methods. 2012; 9 (7): 676–82.
  15. Carpenter AE, Jones TR., Lamprecht MR, Clarke C, Kang IH, Friman O, et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome biology. 2006; 7 (10): R100.
  16. Lee TY, Chin GS, Kim W, Chau D, Gittes GK, Longaker MT. Expression of transforming growth factor beta 1, 2, and 3 proteins in keloids. Annals of plastic surgery. 1999; 43 (2): 179–84.
  17. Klass BR, Grobbelaar AO, Rolfe KJ. Transforming growth factor β1 signalling, wound healing and repair: a multifunctional cytokine with clinical implications for wound repair, a delicate balance. Postgraduate Medical Journal. 2009; 85 (999): 9–14.
  18. Friedrich J, Ebner R, Kunz-Schughart LA. Experimental anti-tumor therapy in 3-D: spheroids–old hat or new challenge? International journal of radiation biology. 2007; 83 (11–12): 849–71.
  19. Ohno M, Abe T. Rapid colorimetric assay for the quantification of leukemia inhibitory factor (LIF) and interleukin-6 (IL-6). Journal of immunological methods. 1991; 145 (1–2): 199–203.
  20. Meran S, Thomas DW, Stephens P, Enoch S, Martin J, Steadman R, et al. Hyaluronan facilitates transforming growth factor-β1-mediated fibroblast proliferation. Journal of Biological Chemistry. 2008; 283 (10): 6530–45.
  21. Negreros M, Hagood JS, Espinoza CR, Balderas-Martínez YI, Selman M, Pardo A. Transforming growth factor beta 1 induces methylation changes in lung fibroblasts. PloS one. 2019; 14 (10): e0223512.
  22. Takezawa T, Mori Y, Yonaha T, Yoshizato K. Characterization of morphology and cellular metabolism during the spheroid formation by fibroblasts. Experimental cell research. 1993; 208 (2): 430–41.
  23. Frandsen SK, Gibot L, Madi M, Gehl J, Rols MP. Calcium electroporation: evidence for differential effects in normal and malignant cell lines, evaluated in a 3D spheroid model. PLoS One. 2015; 10 (12): e0144028.
  24. Mittler F, Obeïd P, Rulina AV, Haguet V, Gidrol X, Balakirev MY. High-content monitoring of drug effects in a 3D spheroid model. Frontiers in oncology. 2017; 7: 293.
  25. Tuan TL, Wu H, Huang EY, Chong SS, Laug W, Messadi D, et al. Increased plasminogen activator inhibitor-1 in keloid fibroblasts may account for their elevated collagen accumulation in fibrin gel cultures. The American journal of pathology. 2003; 162 (5): 1579–89.