ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ

Методика ускоренного получения модельных кишечных барьеров in vitro

Информация об авторах

1 Национальный исследовательский университет «Высшая школа экономики», Москва, Россия

2 Научно-технический центр «БиоКлиникум», Москва, Россия

Для корреспонденции: Сергей Вячеславович Никулин
ул. Вавилова, д. 7, г. Москва, 117321; moc.liamg@b.c.nilukin

Информация о статье

Финансирование: работа выполнена при финансовой поддержке Российского научного фонда (проект № 16-19-10597).

Вклад авторов: С. В. Никулин — культуральная работа, подготовка образцов для анализа транскриптома, анализ данных, написание статьи; А. А. Полозников — анализ транскриптомных данных, написание статьи; Д. А. Сахаров — организация исследования, написание статьи.

Соблюдение этических стандартов: все образцы для исследования были получены с соблюдением принципов и правил Хельсинкской декларации.

Статья получена: 09.11.2020 Статья принята к печати: 03.12.2020 Опубликовано online: 15.12.2020
|
  1. Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol [Internet]. 2009 Nov; 9 (11): 799–809. Available from: http://dx.doi.org/10.1038/nri2653.
  2. Bajic JE, Johnston IN, Howarth GS, Hutchinson MR. From the Bottom-Up: Chemotherapy and Gut-Brain Axis Dysregulation. Front Behav Neurosci [Internet]. 2018 May 22; 12 (May): 1–16. Available from: https://www.frontiersin.org/article/10.3389/ fnbeh.2018.00104/full.
  3. Lee SH. Intestinal Permeability Regulation by Tight Junction: Implication on Inflammatory Bowel Diseases. Intest Res [Internet]. 2015; 13 (1): 11. Available from: http://irjournal.org/journal/view. php?doi=10.5217/ir.2015.13.1.11.
  4. Varadarajan S, Stephenson RE, Miller AL. Multiscale dynamics of tight junction remodeling. J Cell Sci [Internet]. 2019 Nov 15; 132 (22): jcs229286. Available from: http://jcs.biologists.org/lookup/ doi/10.1242/jcs.229286.
  5. Chelakkot C, Ghim J, Ryu SH. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp Mol Med [Internet]. 2018 Aug 16; 50 (8): 103. Available from: http://dx.doi. org/10.1038/s12276-018-0126-x.
  6. Peters MF, Landry T, Pin C, Maratea K, Dick C, Wagoner MP, et al. Human 3D Gastrointestinal Microtissue Barrier Function As a Predictor of Drug-Induced Diarrhea. Toxicol Sci [Internet]. 2019 Mar 1; 168 (1): 3–17. Available from: https://academic.oup.com/ toxsci/article/168/1/3/5145097.
  7. Hashimoto Y, Tachibana K, Krug SM, Kunisawa J, Fromm M, Kondoh M. Potential for Tight Junction Protein–Directed Drug Development Using Claudin Binders and Angubindin-1. Int J Mol Sci [Internet]. 2019 Aug 17; 20 (16): 4016. Available from: https:// www.mdpi.com/1422-0067/20/16/4016.
  8. Hidalgo IJ, Raub TJ, Borchardt RT. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology [Internet]. 1989 Mar; 96 (3): 736–49. Available from: http://linkinghub.elsevier.com/ retrieve/pii/S0016508589800721.
  9. Hubatsch I, Ragnarsson EGE, Artursson P. Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat Protoc [Internet]. 2007 Sep; 2 (9): 2111–9. Available from: http://www.nature.com/doifinder/10.1038/ nprot.2007.303.
  10. Srinivasan B, Kolli AR, Esch MB, Abaci HE, Shuler ML, Hickman JJ. TEER Measurement Techniques for In Vitro Barrier Model Systems. J Lab Autom [Internet]. 2015 Apr; 20 (2): 107–26. Available from: http://journals.sagepub.com/doi/10.1177/2211068214561025.
  11. Nikulin SV, Gerasimenko TN, Shilin SA, Zakharova GS, Gazizov IN, Poloznikov AA, et al. Application of Impedance Spectroscopy for the Control of the Integrity of In Vitro Models of Barrier Tissues. Bull Exp Biol Med [Internet]. 2019 Feb 19; 166 (4): 512–6. Available from: http://link.springer.com/10.1007/s10517-019-04384-5.
  12. Gerasimenko T, Nikulin S, Zakharova G, Poloznikov A, Petrov V, Baranova A, et al. Impedance Spectroscopy as a Tool for Monitoring Performance in 3D Models of Epithelial Tissues. Front Bioeng Biotechnol [Internet]. 2019; 7: 474. Available from: http:// www.ncbi.nlm.nih.gov/pubmed/32039179.
  13. Shah P, Jogani V, Bagchi T, Misra A. Role of Caco-2 Cell Monolayers in Prediction of Intestinal Drug Absorption. Biotechnol Prog [Internet]. 2006 Feb 3; 22 (1): 186–98. Available from: http:// doi.wiley.com/10.1021/bp050208u.
  14. Hilgendorf C, Spahn‐Langguth H, Regårdh CG, Lipka E, Amidon GL, Langguth P. Caco–2 versus Caco–2/HT29–MTX Co–cultured Cell Lines: Permeabilities Via Diffusion, Inside– and Outside–Directed Carrier–Mediated Transport. J Pharm Sci [Internet]. 2000 Jan; 89 (1): 63–75. Available from: https://linkinghub.elsevier.com/ retrieve/pii/S0022354916305408.
  15. Artursson P, Palm K, Luthman K. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv Drug Deliv Rev [Internet]. 2012 Dec; 64 (SUPPL.): 280–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/ S0169409X12002657.
  16. Sakharov D, Maltseva D, Knyazev E, Nikulin S, Poloznikov A, Shilin S, et al. Towards embedding Caco-2 model of gut interface in a microfluidic device to enable multi-organ models for systems biology. BMC Syst Biol [Internet]. 2019 Mar 5; 13 (Suppl 1): 19. Available from: https://bmcsystbiol.biomedcentral.com/ articles/10.1186/s12918-019-0686-y.
  17. Mehling M, Tay S. Microfluidic cell culture. Curr Opin Biotechnol [Internet]. 2014 Feb; 25: 95–102. Available from: https:// linkinghub.elsevier.com/retrieve/pii/S0958166913006794.
  18. Caicedo HH, Brady ST. Microfluidics: The Challenge Is to Bridge the Gap Instead of Looking for a “Killer App.” Trends Biotechnol [Internet]. 2016; 34 (1): 1–3. Available from: http://dx.doi. org/10.1016/j.tibtech.2015.10.003.
  19. Nikulin SV, Knyazev EN, Gerasimenko TN, Shilin SA, Gazizov IN, Zakharova GS, et al. Non-Invasive Evaluation of Extracellular Matrix Formation in the Intestinal Epithelium. Bull Exp Biol Med [Internet]. 2018 Nov 12; 166 (1): 35–8. Available from: http://link. springer.com/10.1007/s10517-018-4283-7.
  20. Samatov TR, Senyavina NV, Galatenko VV, Trushkin EV, Tonevitskaya SA, Alexandrov DE, et al. Tumour-like druggable gene expression pattern of CaCo2 cells in microfluidic chip. Bio Chip J. 2016 Sep;10 (3): 215–20.
  21. Khoshnoodi J, Pedchenko V, Hudson BG. Mammalian collagen IV. Microsc Res Tech [Internet]. 2008 May; 71 (5): 357–70. Available from: http://doi.wiley.com/10.1002/jemt.20564.
  22. Simoneau A, Herring-Gillam FE, Vachon PH, Perreault N, Basora N, Bouatrouss Y, et al. Identification, distribution, and tissular origin of the α5(IV) and α6(IV) collagen chains in the developing human intestine. Dev Dyn [Internet]. 1998 Jul; 212 (3):437–47. Available from: https://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097- 0177(199807)212:3%3C437::AID-AJA11%3E3.0.CO;2-Y.
  23. Basson MD, Modlin IM, Madri JA. Human enterocyte (Caco-2) migration is modulated in vitro by extracellular matrix composition and epidermal growth factor. J Clin Invest [Internet]. 1992 Jul 1; 90 (1): 15–23. Available from: http://www.jci.org/articles/view/115828.
  24. Sanders MA, Basson MD. Collagen IV regulates Caco-2 cell spreading and p130Cas phosphorylation by FAK-dependent and FAK-independent pathways. Biol Chem [Internet]. 2008 Jan 1; 389 (1): 47–55. Available from: http://www.degruyter.com/view/j/ bchm.2008.389.issue-1/bc.2008.008/bc.2008.008.xml.
  25. Sanders MA, Basson MD. Collagen IV regulates Caco-2 migration and ERK activation via α 1 β 1 - and α 2 β 1 -integrin-dependent Src kinase activation. Am J Physiol Liver Physiol [Internet]. 2004 Apr; 286 (4): G547–57. Available from: https://www.physiology. org/doi/10.1152/ajpgi.00262.2003.
  26. Matsuura-Hachiya Y, Arai KY, Muraguchi T, Sasaki T, Nishiyama T. Type IV collagen aggregates promote keratinocyte proliferation and formation of epidermal layer in human skin equivalents. Exp Dermatol [Internet]. 2018 May; 27 (5): 443–8. Available from: http://doi.wiley.com/10.1111/exd.13328.
  27. Öhlund D, Franklin O, Lundberg E, Lundin C, Sund M. Type IV collagen stimulates pancreatic cancer cell proliferation, migration, and inhibits apoptosis through an autocrine loop. BMC Cancer [Internet]. 2013 Dec 26; 13 (1): 154. Available from: http://bmccancer.biomedcentral. com/articles/10.1186/1471-2407-13-154.
  28. Vllasaliu D, Falcone FH, Stolnik S, Garnett M. Basement membrane influences intestinal epithelial cell growth and presents a barrier to the movement of macromolecules. Exp Cell Res [Internet]. 2014 Apr; 323 (1): 218–31. Available from: http://dx.doi.org/10.1016/j. yexcr.2014.02.022.
  29. Maoz BM, Herland A, Henry OYF, Leineweber WD, Yadid M, Doyle J, et al. Organs-on-Chips with combined multi-electrode array and transepithelial electrical resistance measurement capabilities. Lab Chip [Internet]. 2017; 17 (13): 2294–302. Available from: http:// dx.doi.org/10.1039/C7LC00412E.
  30. Kim HJ, Huh D, Hamilton G, Ingber DE. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip [Internet]. 2012; 12 (12): 2165. Available from: http://xlink.rsc.org/?DOI=c2lc40074j.