ORIGINAL RESEARCH

Analysis of 13 TP53 and WRAP53 polymorphism frequencies in russian populations

About authors

1 Research Centre of Medical Genetics (RCMG), Moscow, Russia

2 Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia

Correspondence should be addressed: Marina V. Olkova
Gubkina 3, Moscow, 119991; ur.xobni@sciteneg

About paper

Funding: the study was carried out as part of the public contract between the Ministry of Science and Higher Education of the Russian Federation and the Research Centre of Medical Genetics (phenotyping of samples, database construction, data analysis).

Acknowledgement: we would like to express our appreciation to Oleg Balanovsky, head of the Genome Geography Laboratory of the Vavilov Institute of General Genetics for study management and manuscript editing, to all DNA donors and Biobank of North Eurasia for provided collection of samples, as well as to the Center for Precision Genome Editing and Genetic Technologies for Biomedicine of the Pirogov Russian National Research Medical University (Moscow, Russia) for the opportunity to use the molecular biology technologies.

Author contribution: Olkova MV — study design, statistical analysis, manuscript writing; Petrushenko VS — bioinformatics analysis, Ponomarev GYu — experiments.

Compliance with ethical standards: the study was carried out in accordance with the World Medical Association Declaration of Helsinki. All samples were obtained from Biobank of North Eurasia. The informed consent was obtained from all donors.

Received: 2020-11-26 Accepted: 2020-12-12 Published online: 2021-01-12
|
  1. Joruiz SM, Bourdon JC. P53 isoforms: Key regulators of the cell fate decision. Cold Spring Harbor Perspectives in Medicine. 2016; 6: 8.
  2. Surget S, Khoury MP, Bourdon JC. Uncovering the role of p53 splice variants in human malignancy: a clinical perspective. OncoTargets and Therapy. 2013; 7: 57–68.
  3. Rassoolzadeh H. Unwrapping the role of WRAP53β in DNA damage response [Internet]. [Solna]; 2016. Available from: http:// ceder.graphics.
  4. Mahmoudi S, Henriksson S, Corcoran M, Méndez-Vidal C, Wiman KG, Farnebo M. Wrap53, a natural p53 antisense transcript required for p53 induction upon DNA damage. Molecular Cell. 2009; 33 (4): 462–71.
  5. Farnebo M. Wrap53, a novel regulator of p53. Cell Cycle. 2009; 8 (15): 2343–6. DOI: 10.4161/cc.8.15.9223.
  6. Henriksson S, Farnebo M. On the road with WRAP53β: guardian of Cajal bodies and genome integrity. Front Genet. 2015; 6: 91. doi: 10.3389/fgene.2015.00091.
  7. Bergstrand S, O'Brien EM, Farnebo M. The Cajal body protein WRAP53β prepares the scene for repair of DNA double-strand breaks by regulating local ubiquitination. Front Mol Biosci. 2019; 6: 51. Published 2019 Jul 4. DOI:10.3389/fmolb.2019.00051.
  8. Mahmoudi S. WRAP53 unwrapped; roles in nuclear architecture and cancer. 2011.
  9. Coucoravas C, Dhanjal S, Henriksson S, Böhm S, Farnebo M. Phosphorylation of the Cajal body protein WRAP53β by ATM promotes its involvement in the DNA damage response. RNA Biol. 2017; 14(6): 804–13. DOI:10.1080/15476286.2016.1243647.
  10. Rogoża-Janiszewska E, Malińska K, Górski B, Scott RJ, Cybulski C, Kluźniak W, et al. Prevalence of germline TP53 variants among early-onset breast cancer patients from Polish population. Breast Cancer. 2020.
  11. rs2287499 RefSNP Report - dbSNP - NCBI [Internet]. Available from: https://www.ncbi.nlm.nih.gov/snp/rs2287499#frequency_tab.
  12. rs2287499 (SNP) — Population genetics — Homo_sapiens — Ensembl genome browser 101 [Internet]. Available from: http://www.ensembl.org/Homo_sapiens/Variation/ Population?db=core;r=17:7688350-7689350;v=rs2287499;vdb=v ariation;vf=87573072
  13. rs2287499 | gnomAD v2.1.1 | gnomAD [Internet]. Available from: https:// gnomad.broadinstitute.org/variant/rs2287499?dataset=gnomad_r2_1.
  14. rs2287499 C>G | Genokarta — geneticheskaja enciklopedija [Internet]. Available from: https://genokarta.ru/snps/rs2287499_CG.
  15. Balanovskaya EV, Zhabagin MK, Agdzhoyan AT, Chukhryaeva MI, Markina NV, Balaganskaya OA et al. Populyaczionnye biobanki: princzipy organizaczii i perspektivy primeneniya v genogeografii i personalizirovannoj mediczine. Genetika. 2016; 52 (12): 1371–87.
  16. National Center for Biotechnology Information [Internet]. Available from: https://www.ncbi.nlm.nih.gov/.
  17. What is ClinVar? [Internet]. Available from: https://www.ncbi.nlm. nih.gov/clinvar/intro/.
  18. gnomAD [Internet]. Available from: https://gnomad.broadinstitute. org/.
  19. fathmm — Home [Internet]. Available from: http://fathmm. biocompute.org.uk/.
  20. Pesaran T, Karam R, Huether R, Li S, Farber-Katz S, Chamberlin A, et al. Beyond DNA: an integrated and functional approach for classifying germline variants in breast cancer genes. Int J Breast Cancer. 2016; 2016: 2469523. DOI: 10.1155/2016/2469523.
  21. Zavarykina T, Byrdennyy A, Loginov V, Atkarskaya M, Zhizhina G. A84: Polymorphic markers Arg72Pro and Gln157Lys of TP53 gene in nonsmall cell lung cancer. European Journal of Cancer Supplements [Internet]. 2015; 13 (1): 69. Available from: https:// linkinghub.elsevier.com/retrieve/pii/S1359634915001238.
  22. Zheltuhin AO, Chumakov PM. Povsednevnye i induciruemye funkcii gena р53. 2010; 50: 447–516.
  23. Geng P, Liao Y, Ruan Z, Liang H. Increased risk of cutaneous melanoma associated with p53 Arg72pro polymorphism. PLoS ONE [Internet]. 2015; 10 (3): e0118112. Available from: https:// dx.plos.org/10.1371/journal.pone.0118112.
  24. Coelho A, Nogueira A, Soares S, Assis J, Pereira D, Bravo I, et al. TP53 Arg72Pro polymorphism is associated with increased overall survival but not response to therapy in Portuguese/ Caucasian patients with advanced cervical cancer. Oncology Letters [Internet]. 2018; 15 (5): 8165–71. Available from: http:// www.spandidos-publications.com/10.3892/ol.2018.8354/abstract.
  25. Kodal JB, Vedel-Krogh S, Kobylecki CJ, Nordestgaard BG, Bojesen SE. TP53 Arg72Pro, mortality after cancer, and all-cause mortality in 105,200 individuals. Scientific Reports. 2017; 7 (1).
  26. rs1042522 - Clinical Annotations [Internet]. Available from: https:// www.pharmgkb.org/variant/PA166155173/clinicalAnnotation.
  27. Henríquez-Hernández LA, Murias-Rosales A, González-Hernández A, de León AC, Díaz-Chico N, Fernández-Pérez L. Distribution of TYMS, MTHFR, p53 and MDR1 gene polymorphisms in patients with breast cancer treated with neoadjuvant chemotherapy. Cancer Epidemiology. 2010; 34 (5): 634–8. DOI: 10.1016/j. canep.2010.06.013.
  28. Huang ZH, Hua D, Li LH, Zhu J De. Prognostic role of p53 codon 72 polymorphism in gastric cancer patients treated with fluorouracil-based adjuvant chemotherapy. J Cancer Res Clin Oncol. 2008; 134 (10): 1129–34. DOI: 10.1007/s00432-008-0380-8.
  29. Pouladi N, Abdolahi S, Farajzadeh D, Feizi MAH. Haplotype and linkage disequilibrium of TP53-WRAP53 locus in IranianAzeri women with breast cancer. Roemer K, editor. PLOS ONE [Internet]. 2019; 14 (8): e0220727. Available from: https://dx.plos.org/10.1371/journal.pone.0220727.
  30. Voropaeva EN, Pospeloya TI, Voevoda MI, Mabimovv N. Changes in non-coding sequences of the tp53 gene in diffuse large b-cell lymphoma. Gematologiya i Transfusiologiya. 2018; 63 (3): 239–49.