ORIGINAL RESEARCH

Changes in amino acid profile of cord blood plasma and amniotic fluid of mothers with COVID-19

About authors

Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia

Correspondence should be addressed: Natalia A. Lomova
Oparina, 4, Moscow, 117997; ur.xednay@avomol-ahsatan

About paper

Funding: the study was supported by RFBR grant №. 20-04-60093.

Author contribution: Lomova NA — analysis of clinical data, systematic analysis, manuscript writing; Chagovets VV — mass spectrometry-based metabolome analysis, statistical analysis of the results, manuscript editing; Dolgopolova EL — collection and preparation of biological matrix samples in the red zone, statistical analysis of the results; Novoselova AV — mass spectrometry-based metabolome analysis, mass spectrometry data processing; Petrova UL — collection and preparation of biological matrix samples in the red zone; Shmakov RG — analysis of clinical data in the red zone, systematic analysis, manuscript editing; Frankevich VE — preparation of the study, systematic analysis, manuscript writing and editing.

Compliance with ethical standards: the study was approved by the Ethics Committee of the National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov (protocol № 13 dated December 10, 2020); the study met the requirements of the Declaration of Helsinki, International Conference on Harmonization (ICF), Good Clinical Practice (GCP), and Federal Law № 323-FZ “On the Basics of Protecting Citizens' Health in the Russian Federation” of November 21, 2011; the informed consent was submitted by all patients.

Received: 2021-05-24 Accepted: 2021-06-18 Published online: 2021-06-29
|
  1. Mendez-Figueroa H, Raker C, Anderson BL. Neonatal characteristics and outcomes of pregnancies complicated by influenza infection during the 2009 pandemic. American Journal of Obstetrics and Gynecology. 2011; 204 (6 SUPPL.): 58.
  2. Song JY, Park KV, Han SW, Choi MJ, Noh JY, Cheong HJ, et al. Paradoxical long-term impact of maternal influenza infection on neonates and infants. BMC Infect Dis. 2020; 20 (1): 1–8.
  3. Zeng L, Xia S, Yuan W, Yan K, Xiao F, Shao J, et al. Neonatal Early-Onset Infection with SARS-CoV-2 in 33 Neonates Born to Mothers with COVID-19 in Wuhan, China. JAMA Pediatr. 2020; 174 (7): 722–5.
  4. Yu N, Li W, Kang Q, Zeng W, Feng L, Wu J. No SARS-CoV-2 detected in amniotic fluid in mid-pregnancy. Lancet Infect Dis. 2020. DOI: 10.1016/S1473-3099(20)30320-0.
  5. Chen H, Guo J, Wang C, Luo F, Yu X, Zhang W, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet. 2020; 395 (10226): 809–15.
  6. Zamaniyan M, Ebadi A, Aghajanpoor S, Rahmani Z, Haghshenas M, Azizi S. Preterm delivery, maternal death, and vertical transmission in a pregnant woman with COVID-19 infection. Prenat Diagn. 2020; 40 (13): 1759–61.
  7. Sisman J, Jaleel MA, Moreno W, Rajaram V, Collins RRJ, Savani RC, et al. Intrauterine Transmission of SARS-COV-2 Infection in a Preterm Infant. Pediatr Infect Dis J. 2020; 265–7.
  8. Costa S, Posteraro B, Marchetti S, Tamburrini E, Carducci B, Lanzone A, et al. Excretion of SARS-CoV-2 in human breast milk. Clin Microbiol Infect. 2020; 26 (10): 1430–2.
  9. Buonsenso D, Costa S, Sanguinetti M, Cattani P, Posteraro B, Marchetti S, et al. Neonatal Late Onset Infection with Severe Acute Respiratory Syndrome Coronavirus 2. Am J Perinatol. 2020; 37 (8): 869–72.
  10. Qiancheng X, Jian S, Lingling P, Lei H, Xiaogan J, Weihua L, et al. Coronavirus disease 2019 in pregnancy. Int J Infect Dis. 2020; 95: 376–83.
  11. Dong L, Tian J, He S, Zhu C, Wang J, Liu C, et al. Possible Vertical Transmission of SARS-CoV-2 from an Infected Mother to Her Newborn. JAMA. 2020; 323 (18): 1846–8.
  12. Zhu H, Wang L, Fang C, Peng S, Zhang L, Chang G, et al. Clinical analysis of 10 neonates born to mothers with 2019-nCoV pneumonia. Transl Pediatr. 2020; 9 (1): 51–60.
  13. Zeng H, Xu C, Fan J, Tang Y, Deng Q, Zhang W, et al. Antibodies in Infants Born to Mothers with COVID-19 Pneumonia. JAMA. 2020; 323 (18):1848–9.
  14. Sukhikh G, Petrova U, Prikhodko A, Starodubtseva N, Chingin K, Chen H, et al. Vertical Transmission of SARS-CoV-2 in Second Trimester Associated with Severe Neonatal Pathology. Viruses. 2021; 13 (3). DOI: 10.3390/v13030447.
  15. Ellington S, Strid P, Tong VT, Woodworth K, Galang RR, Zambrano LD, et al. Characteristics of women of reproductive age with laboratory-confirmed SARS-COV-2 infection by pregnancy status — United States, January 22-June 7, 2020. Morb Mortal Wkly Rep. 2020; 69 (25): 769–75.
  16. Vivanti AJ, Vauloup-Fellous C, Prevot S, Zupan V, Suffee C, Do Cao J, et al. Transplacental transmission of SARS-CoV-2 infection. Nat Commun. 2020; 11 (1). DOI: 10.1038/s41467-020-17436-6.
  17. Kell DB, Oliver SG. The metabolome 18 years on: a concept comes of age. Metabolomics. 2016; 12 (10). DOI: 10.1007/ s11306-016-1108-4.
  18. Shen B, Yi X, Sun Y, Bi X, Du J, Zhang C, et al. Proteomic and Metabolomic Characterization of COVID-19 Patient Sera. Cell. 2020; 182 (1): 59-72.e15.
  19. Wannemacher RW, Pekarek RS, Bartelloni PJ, Vollmer RT, Beisel WR. Changes in individual plasma amino acids following experimentally induced sand fly fever virus infection. Metabolism. 1972; 21 (1): 67–76.
  20. Banoei MM, Vogel HJ, Weljie AM, Kumar A, Yende S, Angus DC, et al. Plasma metabolomics for the diagnosis and prognosis of H1N1 influenza pneumonia. 2017; 1–15. DOI: 10.1186/s13054-017-1672-7
  21. Inoue S, Ikeda H. Differences in plasma amino acid levels in patients with and without bacterial infection during the early stage of acute exacerbation of COPD. Int J COPD. 2019; 14: 575–83.
  22. Moat SJ, George RS, Carling RS. Use of Dried Blood Spot Specimens to Monitor Patients with Inherited Metabolic Disorders. Int J Neonatal Screen. 2020; 6 (2): 1–17.
  23. Páez-Franco JC, Torres-Ruiz J, Sosa-Hernández VA, CervantesDíaz R, Romero-Ramírez S, Pérez-Fragoso A, et al. Metabolomics analysis reveals a modified amino acid metabolism that correlates with altered oxygen homeostasis in COVID-19 patients. Sci Rep. 2021; 11 (1). DOI: 10.1038/s41598-021-85788-0.
  24. Rees CA, Rostad CA, Mantus G, Anderson EJ, Chahroudi A, Jaggi P. Altered amino acid profile in patients with SARS-CoV-2 infection. 2021; 118 (25): 4–6.
  25. Hirschel J, Vogel M, Baber R, Garten A, Beuchel C, Dietz Y, et al. Relation of whole blood amino acid and acylcarnitine metabolome to age, sex, BMI, puberty, and metabolic markers in children and adolescents. Metabolites. 2020; 10 (4). DOI: 10.3390/ metabo10040149.
  26. Thaker SK, Chng J, Christofk HR. Viral hijacking of cellular metabolism. BMC Biol. 2019; 17 (1): 59.
  27. Diorio C, McNerney KO, Lambert M, Paessler M, Anderson EM, Henrickson SE, et al. Evidence of thrombotic microangiopathy in children with SARS-CoV-2 across the spectrum of clinical presentations. Blood Adv. 2020; 4 (23): 6051–63.
  28. Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nature Reviews Immunology. 2020; 20 (6): 363–74.
  29. Gambardella J, Khondkar W, Morelli MB, Wang X, Santulli G, Trimarco V. Arginine and endothelial function. Biomedicines. 2020; 8 (8): 277.
  30. Rodríguez PC, Ochoa AC. Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: Mechanisms and therapeutic perspectives. Immunological Reviews. 2008; 222 (1): 180–91.
  31. Morris CR, Hamilton-Reeves J, Martindale RG, Sarav M, Ochoa Gautier JB. Acquired Amino Acid Deficiencies: A Focus on Arginine and Glutamine. In: Nutrition in Clinical Practice. SAGE Publications Inc.: 2017; 30S–47S.
  32. IKEDA H. Plasma amino acid levels in individuals with bacterial pneumonia and healthy controls. 2020; 1–17. DOI: 10.21203/ rs.3.rs-18796/v1.
  33. Ware LB, Magarik JA, Wickersham N, Cunningham G, Rice TW, Christman BW, et al. Low plasma citrulline levels are associated with acute respiratory distress syndrome in patients with severe sepsis. Crit Care. 2013; 17 (1): 1–8.