ORIGINAL RESEARCH

Role of mast cells in skin regeneration after thermal burn treated with melatonin-enriched dermal film

About authors

1 South-Ural State Medical University, Chelyabinsk, Russia

2 Chelyabinsk Regional Clinical Hospital, Chelyabinsk, Russia

3 Pirogov Russian National Research Medical University, Moscow, Russia

Correspondence should be addressed: Anna A. Ageeva
Vorovskogo, 64, Chelyabinsk, 454092; ur.xednay@r.aveega.enna

About paper

Funding: the study was supported by the Russian Foundation for Basic Research and the government of Chelyabinsk region (Project ID 20-415-740016).

Author contribution: Osikov MV — study concept and design; integral analysis of the obtained data; manuscript preparation and editing; Ageeva AA — data acquisition; statistical analysis; analysis of study results; manuscript preparation; Fedosov AA — analysis of study results; manuscript editing; Ushakova VA — synthesis of the dermal film; analysis of study results.

Compliance with ethical standards: the study was approved by the Ethics Committee of South-Ural State Medical University (Protocol № 10 dated November 15, 2019). The study was conducted at a standard vivarium in strict compliance with guidelines on the care and euthanasia of laboratory animals outlined in the European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes (ETS № 123 , March 18, 1986, Strasburg), the EU Commission Recommendation 2007/526/EC on Guidelines for the Accommodation and Care of Animals used for Experimental and other Scientific Purposes (June 18, 2007), and the Directive 2010/63/EU of the European Parliament and of the Council on the Protection of Animals used for Scientific Purposes (September 22, 2010).

Received: 2021-06-28 Accepted: 2021-07-12 Published online: 2021-08-07
|
  1. WHO Fact Sheet: Burns. [(accessed on 6 March 2018)]; Available online: https://www.who.int/news-room/fact-sheets/detail/burns.
  2. Wang Y, Beekman J, Hew J, Jackson S, Issler-Fisher AC, Parungao R, et al. Burn injury: Challenges and advances in burn wound healing, infection, pain and scarring. Adv Drug Deliv Rev. 2018; 123: 3–17. DOI: 10.1016/j.addr.2017.09.018.
  3. Saavedra PA, deBrito ES, Areda CA, Escalda PM, Galato D. Burns in the Brazilian Unified Health System: a review of hospitalization from 2008 to 2017. Int J Burns Trauma. 2019 Oct 15; 9 (5): 88–98.
  4. Yang P, Li Y, Xie Y, Liu Y. Different faces for different places: heterogeneity of neutrophil phenotype and function. J Immunol Res. 2019 Feb 28; 2019: 8016254. DOI: 10.1155/2019/8016254.
  5. Nguyen AV, Soulika AM. The Dynamics of the Skin's Immune System. Int J Mol Sci. 2019 Apr 12; 20 (8). pii: E1811. DOI: 10.3390/ijms20081811.
  6. Murray RZ, West ZE, Cowin AJ, Farrugia BL. Development and use of biomaterials as wound healing therapies. Burns Trauma. 2019 Jan 25; 7: 2. DOI: 10.1186/s41038-018-0139-7.6
  7. Osikov MV, Telesheva LF, Ageev YI. Antioxidant effect of erythropoietin during experimental chronic renal failure. Bulletin of Experimental Biology and Medicine. 2015; 160 (2): 202–4.7
  8. Osikov MV, Telesheva LF, Ageev YuI. Vlijanie jeritropojetina na apoptoz limfocitov pri jeksperimental'noj hronicheskoj pochechnoj nedostatochnosti. Bjulleten' jeksperimental'noj biologii i mediciny. 2015; 3: 326–9. Russian.
  9. Tordjman S, Chokron S2, Delorme R, et al. Melatonin: pharmacology, functions and therapeutic benefits. Curr Neuropharmacol. 2017 Apr; 15 (3): 434–43.
  10. Varoni EM, Soru C, Pluchino R, et al. The impact of melatonin in research. Molecules. 2016 Feb 20; 21 (2): 240. DOI: 10.3390/ molecules21020240.
  11. Lopes RCV, Assis Martins J, Ribeiro de Souza T, de Castro Nunes Rincon G, Pacheco Miguel M, Borges de Menezes L, Correa Amaral A. Melatonin loaded lecithin-chitosan nanoparticles improved the wound healing in diabetic rats. Int J Biol Macromol. 2020 Nov 1; 162: 1465–75. DOI: 10.1016/j.ijbiomac.2020.08.027.
  12. Kaczmarek-Szczepańska B, Ostrowska J, Kozłowska J, Szota Z, Brożyna AA, Dreier R, et al. Evaluation of polymeric matrix loaded with melatonin for wound dressing. Int J Mol Sci. 2021 May 26; 22 (11): 5658. DOI: 10.3390/ijms22115658.
  13. Rusanova I, Martínez-Ruiz L, Florido J, Rodríguez-Santana C, Guerra-Librero A, Acuña-Castroviejo D, et al. Protective effects of melatonin on the skin: future perspectives. Int J Mol Sci. 2019 Oct 8; 20 (19): 4948. DOI: 10.3390/ijms20194948.
  14. Theoharides TC. Neuroendocrinology of mast cells: Challenges and controversies. Exp Dermatol. 2017 Sep; 26 (9): 751–9.
  15. Li H, Yao Z, Tan J, et al. Epidemiology and outcome analysis of 6325 burn patients: a five-year retrospective study in a major burn center in Southwest China. Sci Rep. 2017 Apr 6; 7: 46066. DOI: 10.1038/srep46066.
  16. Ageeva AA, Osikov MV, Simonjan EV, Toporec TA, Potehina EA, avtory. Federal'noe gosudarstvennoe bjudzhetnoe obrazovatel'noe uchrezhdenie vysshego obrazovanija «Juzhno-Ural'skij gosudarstvennyj medicinskij universitet» Ministerstva zdravoohranenija Rossijskoj Federacii, patentoobladatel'. Sredstvo v vide plenki lekarstvennoj, soderzhashhej melatonin, dlja lechenija termicheskoj travmy patent # 2 751 048 07.07.2021. Russian.
  17. Chen H, Xu Y, Yang G, Zhang Q, Huang X, Yu L, et al. X. Mast cell chymase promotes hypertrophic scar fibroblast proliferation and collagen synthesis by activating TGF-β1/Smads signaling pathway. Exp Ther Med. 2017 Nov; 14 (5): 4438–42.
  18. Sadiq A, Shah A, Jeschke MG, et al. The Role of Serotonin during Skin Healing in Post-Thermal Injury. Int J Mol Sci. 2018 Mar 29; 19(4). pii: E1034. DOI: 10.3390/ijms19041034. 12.
  19. Nagy B, Szélig L, Rendeki S, et al. Dynamic changes of matrix metalloproteinase 9 and tissue inhibitor of metalloproteinase 1 after burn injury. J Crit Care. 2015; 30 (1): 162–6. DOI: 10.1016/j. jcrc.2014.07.008.
  20. Lang TC, Zhao R, Kim A, et al. A Critical Update of the Assessment and Acute Management of Patients with Severe Burns. Adv Wound Care (New Rochelle). 2019; 8 (12): 607–33. DOI:10.1089/ wound.2019.0963.
  21. Wilgus TA, Roy S, McDaniel JC. Neutrophils and wound repair: positive actions and negative reactions. Adv Wound Care (New Rochelle). 2013; 2 (7): 379–88. DOI: 10.1089/wound.2012.0383
  22. Johnson KE, Wilgus TA. Vascular endothelial growth factor and angiogenesis in the regulation of cutaneous wound repair. Adv Wound Care (New Rochelle) 2014; 3: 647–61.
  23. Yamakawa S, Hayashida K. Advances in surgical applications of growth factors for wound healing. Burns Trauma. 2019 Apr 5; 7: 10. DOI: 10.1186/s41038-019-0148-1.
  24. Wilgus TA. Vascular endothelial growth factor and cutaneous scarring. Adv Wound Care (New Rochelle). 2019 Dec 1; 8 (12): 671–8.
  25. Kwak DH, Bae TH, Kim WS, Kim HK. Anti-vascular endothelial growth factor (Bevacizumab) therapy reduces hypertrophic scar formation in a rabbit ear wounding model. Arch Plast Surg. 2016; 43: 491–7.
  26. Osikov MV, Simonyan EV, Ageeva AA, Ageev YI, Sinitsky AI, Fedosov AA. Local antioxidant effect of original dermal film with melatonin in thermal injury. Bulletin of Russian State Medical University. 2020; 6: 104–12.
  27. Osikov MV, Simonjan EV, Ageeva AA, Ageev YuI. Melatonin v sostave dermal'noj plenki ogranichivaet gibel' limfocitov v krovi pri jeksperimental'noj termicheskoj travme. Medicinskaja immunologija. 2021; 23 (2): 389–94. Russian.
  28. Alluri H, Wilson RL, Anasooya Shaji C, et al. Melatonin Preserves Blood-Brain Barrier Integrity and Permeability via Matrix Metalloproteinase-9 Inhibition. PLoS One. 2016; 11 (5): e0154427. DOI: 10.1371/journal.pone.0154427.
  29. Hazra S, Chaudhuri AG, Tiwary BK, Chakrabarti N. Matrix metallopeptidase 9 as a host protein target of chloroquine and melatonin for immunoregulation in COVID-19: A network-based meta-analysis. Life Sci. 2020; 257: 118096. DOI: 10.1016/j. lfs.2020.118096.
  30. Qin W, Li J, Zhu R, et al. Melatonin protects blood-brain barrier integrity and permeability by inhibiting matrix metalloproteinase-9 via the NOTCH3/NF-κB pathway. Aging (Albany NY). 2019; 11 (23): 11391–415. DOI: 10.18632/aging.102537.
  31. Wiggins-Dohlvik K, Han MS, Stagg HW, Alluri H, Shaji CA, Oakley RP, et al. Melatonin inhibits thermal injury-induced hyperpermeability in microvascular endothelial cells. J Trauma Acute Care Surg. 2014; 77: 899–905.
  32. Maldonado MD, Garcia-Moreno H, Calvo JR. Melatonin protects mast cells against cytotoxicity mediated by chemical stimuli PMACI: possible clinical use. J Neuroimmunol. 2013 Sep 15; 262 (1–2): 62–5.
  33. Rahbarghazi A, Siahkouhian M, Rahbarghazi R, et al. Role of melatonin in the angiogenesis potential; highlights on the cardiovascular disease. J Inflamm (Lond). 2021; 18 (1): 4. DOI: 10.1186/s12950-021-00269-5.
  34. Bhattacharya S, Patel KK, Dehari D, Agrawal AK, Singh S. Melatonin and its ubiquitous anticancer effects. Mol Cell Biochem. 2019 Dec; 462 (1–2): 133–55.
  35. Zhu P, Liu J, Shi J, Zhou Q, Liu J, Zhang X, et al. Melatonin protects ADSC s from ROS and enhances their therapeutic potency in a rat model of myocardial infarction. J Cell Mol Med. 2015; 19 (9): 2232–43.
  36. Lee JH, Han YS, Lee SH. Melatonin-Induced PGC-1α Improves Angiogenic Potential of Mesenchymal Stem Cells in Hindlimb Ischemia. Biomol Ther (Seoul). 2020; 28 (3): 240–9. DOI: 10.4062/ biomolther.2019.131.