Copyright: © 2021 by the authors. Licensee: Pirogov University.
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (CC BY).

ORIGINAL RESEARCH

Activation of sensorimotor integration processes with a brain-computer interface

Rubakova AA, Ivanova GE, Bulatova MA
About authors

Federal Center for Brain Research and Neurotechnologies of FMBA, Moscow, Russia

Correspondence should be addressed: Alexandra Rubakova
Ostrovityanova, 1, str. 10, Moscow, 117997; ur.xobni@goloibardnas

About paper

Author contribution: Rubakova AA — data acquisition, analysis, interpretation; literature analysis; Ivanova GE — study design; manuscript editing; Bulatova MA — data acquisition and analysis.

Compliance with ethical standards: the study was approved by the Ethics Committee of the Federal Center for Brain Research and Neurotechnologies (Protocol № 33 dated June 21, 2021.). Informed consent was obtained from all study participants.

Received: 2021-07-26 Accepted: 2021-08-15 Published online: 2021-09-01
|
  1. Edwards LL. King EM, Buetefisch CM, Borich MR. Putting the "Sensory" Into Sensorimotor Control: The Role of Sensorimotor Integration in Goal-Directed Hand Movements After Stroke. Frontiers in Integrative Neuroscience. 2019; 13: 16. DOI: 10.3389/ fnint.2019.00016.
  2. Espenhahn S, Rossiter HE, van Wijk BCM, Redman N, Rondina JM, Diedrichsen J, et al. Sensorimotor cortex beta oscillations reflect motor skill learning ability after stroke. Brain Communications. 2020; 2 (2): fcaa161. DOI: 10.1093/braincomms/fcaa161.
  3. Mahoney JR, Verghese J. Does Cognitive Impairment Influence Visual-Somatosensory Integration and Mobility in Older Adults? The journals of gerontology. Series A, Biological sciences and medical sciences. 2020; 75 (3): 581–8. DOI: 10.1093/gerona/glz117.
  4. Jacquey L, Baldassarre G, Santucci VG, O'Regan JK. Sensorimotor Contingencies as a Key Drive of Development: From Babies to Robots. Frontiers in neurorobotics. 2019; 13: 98. DOI: 10.3389/fnbot.2019.00098.
  5. Luft AR, Buitrago MM, Ringer T, Dichgans J, Schulz JB. Motor skill learning depends on protein synthesis in motor cortex after training. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2004; 24 (29): 6515–20. DOI: 10.1523/ JNEUROSCI.1034-04.2004.
  6. Hosp JA, Mann S, Wegenast-Braun BM, Calhoun ME, Luft AR. Region and task-specific activation of arc in primary motor cortex of rats following motor skill learning. Neuroscience. 2013; 250: 557–64. DOI: 10.1016/j.neuroscience.2013.06.060.
  7. Norman SL, McFarland DJ, Miner A, Cramer SC, Wolbrecht ET, Wolpaw JR, Reinkensmeyer DJ. Controlling pre-movement sensorimotor rhythm can improve finger extension after stroke. Journal of neural engineering. 2018; 15 (5): 056026. DOI: 10.1088/1741-2552/aad724.
  8. Friedrich J, Verrel J, Kleimaker M, Münchau A, Beste C, Bäumer T. Neurophysiological correlates of perception-action binding in the somatosensory system. Scientific reports. 2020; 10 (1): 14794. DOI: 10.1038/s41598-020-71779-0.
  9. Kotov SV, Turbina LG, Bobrov PD, Frolov AA, Pavlova OG, Kurganskaya ME, i dr. Primenenie kompleksa «interfejs «mozgkomp'juter» i jekzoskelet» i tehniki voobrazhenija dvizhenija dlja reabilitacii posle insul'ta. Al'manah klinicheskoj mediciny. 2015; (39): 15–21. DOI: 10.18786/2072-0505-2015-39-1521. Russian.
  10. Koroleva ES, Alifirova VM, Latypova AV, Cheban SV, Ott VA, Brazovskiy KS, i dr. Principy i opyt primenenija robotizirovannyh reabilitacionnyh tehnologij u pacientov posle insul'ta. Bjulleten' sibirskoj mediciny. 2019; 18 (2): 223–33. DOI: 10.20538/16820363-2019-2-223-233. Russian.
  11. Di Pino G, Pellegrino G, Assenza G, Capone F, Ferreri F, Formica D, et al. Modulation of brain plasticity in stroke: a novel model for neurorehabilitation. Nat Rev Neurol. 2014; 10 (10): 597–608. DOI: 10.1038/nrneurol.2014.162.
  12. Nahmani M, Turrigiano GG. Adult cortical plasticity following injury: recapitulation of critical period mechanisms? Neuroscience. 2014; 283: 4–16. DOI: 10.1016/j.neuroscience.2014.04.029.
  13. Bertani R, Melegari C, De Cola MC, Bramanti A, Bramanti P, Calabrò RS. Effects of robot-assisted upper limb rehabilitation in stroke patients: a systematic review with meta-analysis. Neurol Sci. 2017; 38 (9): 1561–9. DOI: 0.1007/s10072-017-2995-5.
  14. Chivukula S, Jafari M, Aflalo T, Yong NA, Pouratian N. Cognition in Sensorimotor Control: Interfacing With the Posterior Parietal Cortex. Front Neurosci. 2019; 13: 140. DOI: 10.3389/ fnins.2019.00140.
  15. Frolov A, Husek D, Bobrov PD, Korshakov A, Chernikova L, Konovalov R, Mokienko O. Sources of EEG activity most relevant to performance of brain-computer interface based on motor imagery. Neural Network World. 2012; 22 (1): 21–37. DOI: 10.14311/Nnw.2012.22.002.
  16. Frolov AA, Mokienko O, Lyukmanov R, Biryukova E, Kotov S, Turbina L, et al. Post-stroke Rehabilitation Training with a MotorImagery-Based Brain-Computer Interface (BCI)-Controlled Hand Exoskeleton: A Randomized Controlled Multicenter Trial. Front Neurosci. 2017; 11: 400. DOI: 10.3389/fnins.2017.00400.
  17. Yoshimura N, Tsuda H, Aquino D, Takagi A, Ogata Y, Koike Y, et al. Age-Related Decline of Sensorimotor Integration Influences Resting-State Functional Brain Connectivity. Brain sciences. 2020; 10 (12): 966.
  18. Tanji J, Shima K. Role for supplementary motor area cells in planning several movements ahead. Nature. 1994; 371 (6496): 413–6. DOI: 0.1038/371413a0.
  19. Mazurek KA, Richardson D, Abraham N, Foxe JJ, Freedman EG. Utilizing High-Density Electroencephalography and Motion Capture Technology to Characterize Sensorimotor Integration While Performing Complex Actions. IEEE transactions on neural systems and rehabilitation engineering: a publication of the IEEE Engineering in Medicine and Biology Society. 2020; 28 (1): 287– 96. DOI: 10.1109/TNSRE.2019.2941574.
  20. Gassert R, Dietz V. Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective. Neuroeng Rehabil. 2018; 15 (1): 46. DOI: 10.1186/s12984-018-0383-x.