ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ
Изменения микробиоты кишечника и их связь с тяжестью заболевания и некоторыми показателями цитокинового профиля у пациентов с COVID-19
Крымский федеральный университет имени В. И. Вернадского, Симферополь, Россия
Для корреспонденции: Лея Евгеньевна Сорокина
бул. Ленина, 5/7, г. Симферополь, 295006, Республика Крым; ur.liam@anikoros.ayel
Вклад авторов: Л. Н. Гуменюк, Л. Е. Сорокина — существенный вклад в замысел и дизайн исследования; М. В. Голод, Н. В. Силаева, Н. А. Андрощук — сбор, анализ и интерпретация данных; С. С. Ильясов — статистическая обработка данных; О. Р. Кривошапко, А. М. Велиляев, Л. Н. Асанова — подготовка рукописи.
Соблюдение этических стандартов: исследование одобрено этическим комитетом Крымской медицинской академии им. С. И. Георгиевского» ФГАОУ ВО «Крымский федеральный университет им. В. И. Вернадского» (протокол № 11 от 23 ноября 2021 г.), спланировано и проведено в соответствии с Хельсинской декларацией. Все лица, включенные в исследование, подписали добровольное информированное согласие.
- Statement on the second meeting of the International Health Regulations Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV). World Health Organization (WHO), 2020. Available from: https://www.who.int/news-room/detail/3001-2020-statement-on-the-second-meeting-of-the-internationalhealth-regulations-(2005)-emergency-committee-regarding-theoutbreak-of-novel-coronavirus-(2019-ncov) (assessed Dec 15, 2021).
- Tao W, Zhang G, Wang X, et al. Analysis of the intestinal microbiota in COVID-19 patients and its correlation with the inflammatory factor IL18. Med Microecol. 2020; 5: 100023. DOI:10.1016/j. medmic.2020.100023.
- Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020; 20 (6): 363–74. DOI: 10.1038/s41577-0200311-8.
- Costela-Ruiz VJ, Illescas-Montes R, Puerta-Puerta JM, Ruiz C, Melguizo-Rodríguez L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev. 2020; 54: 62–75. DOI: 10.1016/j.cytogfr.2020.06.001.
- Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395: 1054–62. DOI: 10.1016/S0140-6736(20)30566-3.
- Lamers MM, Beumer J, van der Vaart J, et al. SARS-CoV-2 productively infects human gut enterocytes. Science. 2020; 369 (6499): 50–54. DOI: 10.1126/science.abc1669.
- Zuo T, Zhang F, Lui GCY, et al. Alterations in Gut Microbiota of Patients With COVID-19 During Time of Hospitalization. Gastroenterology. 2020; 159 (3): 944–55.e8. DOI:10.1053/j. gastro.2020.05.048.
- Guan WJ, Ni ZY, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020; 382 (18): 1708–20. DOI: 10.1056/NEJMoa2002032.
- Chan KH, Poon LL, Cheng VC, et al. Detection of SARS coronavirus in patients with suspected SARS. Emerg Infect Dis. 2004; 10 (2): 294–9. DOI: 10.3201/eid1002.030610.
- Wu HJ, Wu E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes. 2012; 3 (1): 4–14. DOI: 10.4161/ gmic.19320.
- Gu S, Chen Y, Wu Z, et al. Alterations of the Gut Microbiota in Patients With Coronavirus Disease 2019 or H1N1 Influenza. Clin Infect Dis. 2020; 71 (10): 2669–78. DOI: 10.1093/cid/ciaa709.
- Zuo T, Liu Q, Zhang F, et al. Depicting SARS-CoV-2 faecal viral activity in association with gut microbiota composition in patients with COVID-19. Gut. 2021; 70 (2): 276–84. DOI: 10.1136/ gutjnl-2020-322294.
- Мареев В. Ю., Беграмбекова Ю. Л., Мареев Ю. В. Как оценивать результаты лечения больных с новой коронавирусной инфекцией (COVID-19)? Шкала Оценки Клинического Состояния (ШОКС–КОВИД). Кардиология. 2020; 60 (11): 35–41.
- Mitra S, Forster-Fromme K, Damms-Machado A, et al. Analysis of the intestinal microbiota using SOLiD16S rRNA gene sequencing and SOLiD shotgun sequencing. BMC Genomics. 2013; 14 (5): 16.
- Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010; 7 (5): 335–6. DOI: 10.1038/ nmeth.f.303.
- DeSantis, TZ, Hugenholtz P, Larsen N. Greengenes, a chimerachecked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006; 72: 5069–72.
- Ritari J, Salojärvi J, Lahti L, de Vos WM. Improved taxonomic assignment of human intestinal 16S rRNA sequences by a dedicated reference database. BMC Genomics. 2015; 16 (1): 1056. DOI: 10.1186/s12864-015-2265-y.
- Gaibani P, D'Amico F, Bartoletti M, et al. The Gut Microbiota of Critically Ill Patients With COVID-19. Front Cell Infect Microbiol. 2021; 11: 670424. DOI: 10.3389/fcimb.2021.670424.
- Gilmore MS, Clewell DB, Ike Y, Shankar N, eds. Enterococci: From Commensals to Leading Causes of Drug Resistant Infection. Boston: Massachusetts Eye and Ear Infirmary, 2014.
- Tamburini FB, Andermann TM, Tkachenko E, Senchyna F, Banaei N, Bhatt AS. Precision identification of diverse bloodstream pathogens in the gut microbiome. Nat Med. 2018; 24 (12): 1809– 14. DOI: 10.1038/s41591-018-0202-8.
- Yeoh YK, Zuo T, Lui GC, et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut. 2021; 70 (4): 698–06. DOI: 10.1136/ gutjnl-2020-323020.
- Danilenko VN, Devyatkin AV, Marsova MV, et al Common in– ammatory mechanisms in COVID-19 and Parkinson’s diseases: the role of microbiome, pharmabiotics and postbiotics in their prevention. Journal of Inflammation Research. 2021; 14, 6349–81. DOI: 10.2147/JIR.S333887.
- Poluektova E, Yunes R, Danilenko V. The Putative Antidepressant Mechanisms of Probiotic Bacteria: Relevant Genes and Proteins. Nutrients. 2021; 13 (5): 1591. DOI: 10.3390/nu13051591.
- West CE, Renz H, Jenmalm MC, et al. The gut microbiota and inflammatory noncommunicable diseases: associations and potentials for gut microbiota therapies. J Allergy Clin Immunol. 2015; 135 (1): 3–14. DOI: 10.1016/j.jaci.2014.11.012.
- Sun Z, Song ZG, Liu C, et al. Gut microbiome alterations and gut barrier dysfunction are associated with host immune homeostasis in COVID-19 patients. BMC Med. 2022; 24: 20. DOI: 10.1186/ s12916-021-02212-0.
- Бухарин О. В., Чайникова И. Н., Иванова Е. В. и др. Иммунорегуляторный профиль микросимбионтов кишечного биотопа человека. Журнал микробиологии, эпидемиологии и иммунобиологии. 2018; 4: 42–51.
- Hursitoglu M, Isıksacan N, Erismis B, et al. In-vitro cytokine production and nasopharyngeal microbiota composition in the early stage of COVID-19 infection. Cytokine. 2022; 149: 155757. DOI: 10.1016/j.cyto.2021.155757.
- Sokol H, Pigneur B, Watterlot L, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA. 2008; 105 (43): 16731–6. DOI: 10.1073/pnas.0804812105.
- Zhang M, Qiu X, Zhang H, et al. Faecalibacterium prausnitzii inhibits interleukin-17 to ameliorate colorectal colitis in rats. PLoS One. 2014; 9 (10): e109146. DOI: 10.1371/journal.pone.0109146.
- Zhou L, Zhang M, Wang Y, et al. Faecalibacterium prausnitzii Produces Butyrate to Maintain Th17/Treg Balance and to Ameliorate Colorectal Colitis by Inhibiting Histone Deacetylase 1. Inflamm Bowel Dis. 2018; 24 (9): 1926–40. DOI: 10.1093/ibd/ izy182.
- van der Lelie D, Taghavi S. COVID-19 and the Gut Microbiome: More than a Gut Feeling. mSystems. 2020; 5 (4): e00453-20. DOI: 10.1128/mSystems.00453-20.
- Li L, Zhong Q. Correlation of intestinal microflora with cytokines and Toll-like receptors expression in patients with ulcerative colitis. Infect Dis Inf. 2017; 30 (6): 361–4. DOI: 10.3969/j.issn.10078134.2017.06.012.
- Lu J, Ma SS, Zhang WY, Duan JP. Changes in peripheral blood inflammatory factors (TNFα and IL6) and intestinal flora in AIDS and HIV-positive individuals. J Zhejiang Univ Sci B. 2019; 20 (10): 793–802. DOI: 10.1631/jzus.B1900075.