
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (CC BY).
OPINION
Drug design strategies for the treatment of coronavirus infection
1 Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
2 Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, Russia
3 Pirogov Russian National Research Medical University, Moscow, Russia
Corresponding author: Alexandra Sergeevna Tsarkova
Miklukho-Maklay, 16/10, Moscow, 117997, Russia; moc.liamg@avokrastla
Funding: this work was financially supported by grant № 075-15-2021-1049 from the Ministry of Science and Higher Education of the Russian Federation.
Contributing authors: S.S. Terekhov, V.I. Shmygarev, K.V. Purtov — literature analysis; I.V. Yampolsky, I.V. Smirnov — literature analysis, general project management; A.S. Tsarkova — literature analysis, data processing, project management, article writing.
- The top 10 causes of death, Geneva: World Health Organization c2022 [cited 2022 Nov 30]. Available from: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.
- WHO Coronavirus (COVID-19) Dashboard, Geneva: World Health Organization c2022 [cited 2022 Nov 30]. Available from: https://covid19.who.int/
- Zhou H, Yang J, Zhou C, Chen B, Fang H, Chen S, et al. A Review of SARS-CoV2: Compared With SARS-CoV and MERS-CoV. Front Med. 2021; 8: 628370.
- Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol. 2015; 1282: 1‒23.
- Báez-Santos YM, St. John SE, Mesecar AD. The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds. Antiviral Res. 2015; 115: 21‒38.
- Wang F, Chen C, Tan W, Yang K, Yang H. Structure of Main Protease from Human Coronavirus NL63: Insights for Wide Spectrum Anti-Coronavirus Drug Design. Sci Rep. 2016; 6: 22677.
- Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature. 2020; 582: 289‒93.
- Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science. 2020; 368 (6489): 409‒12.
- Liu Y, Liang C, Xin L, Ren X, Tian L, Ju X, et al. The development of Coronavirus 3C-Like protease (3CLpro) inhibitors from 2010 to 2020. Eur J Med Chem. 2020; 206: 112711.
- Owen DR, Allerton CMN, Anderson AS, Aschenbrenner L, Avery M, Berritt S, et al. An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19. Science. 2021; 374 (6575): 1586‒93.
- de Vries M, Mohamed AS, Prescott RA, Valero-Jimenez AM, Desvignes L, O’Connor R, et al. A comparative analysis of SARS-CoV-2 antivirals characterizes 3CLpro inhibitor PF-00835231 as a potential new treatment for COVID-19. J Virol. 2021; 95 (10): e01819‒20.
- Poreba M. Protease-activated prodrugs: strategies, challenges, and future directions. FEBS J. 2020; 287 (10): 1936‒69.
- Choi KY, Swierczewska M, Lee S, Chen X. Protease-activated drug development. Theranostics. 2012; 2 (2): 156‒78.
- Richter M, Leuthold MM, Graf D, Bartenschlager R, Klein CD. Prodrug activation by a viral protease: evaluating combretastatin peptide hybrids to selectively target infected cells. ACS Med Chem Lett. 2019; 10: 1115‒21.
- Boyce JH, Dang B, Ary B, Edmondson Q, Craik CS, Degrado WF, et al. Platform to Discover Protease-Activated Antibiotics and Application to Siderophore–Antibiotic Conjugates. J Am Chem Soc. 2020; 142 (51): 21310.