OPINION

Drug design strategies for the treatment of coronavirus infection

About authors

1 Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia

2 Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, Russia

3 Pirogov Russian National Research Medical University, Moscow, Russia

Corresponding author: Alexandra Sergeevna Tsarkova
Miklukho-Maklay, 16/10, Moscow, 117997, Russia; moc.liamg@avokrastla

About paper

Funding: this work was financially supported by grant № 075-15-2021-1049 from the Ministry of Science and Higher Education of the Russian Federation.

Contributing authors: S.S. Terekhov, V.I. Shmygarev, K.V. Purtov — literature analysis; I.V. Yampolsky, I.V. Smirnov — literature analysis, general project management; A.S. Tsarkova — literature analysis, data processing, project management, article writing.

Received: 2022-12-05 Accepted: 2022-12-19 Published online: 2022-12-28
|
  1. The top 10 causes of death, Geneva: World Health Organization c2022 [cited 2022 Nov 30]. Available from: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.
  2. WHO Coronavirus (COVID-19) Dashboard, Geneva: World Health Organization c2022 [cited 2022 Nov 30]. Available from: https://covid19.who.int/
  3. Zhou H, Yang J, Zhou C, Chen B, Fang H, Chen S, et al. A Review of SARS-CoV2: Compared With SARS-CoV and MERS-CoV. Front Med. 2021; 8: 628370.
  4. Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol. 2015; 1282: 1‒23.
  5. Báez-Santos YM, St. John SE, Mesecar AD. The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds. Antiviral Res. 2015; 115: 21‒38.
  6. Wang F, Chen C, Tan W, Yang K, Yang H. Structure of Main Protease from Human Coronavirus NL63: Insights for Wide Spectrum Anti-Coronavirus Drug Design. Sci Rep. 2016; 6: 22677.
  7. Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature. 2020; 582: 289‒93.
  8. Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science. 2020; 368 (6489): 409‒12.
  9. Liu Y, Liang C, Xin L, Ren X, Tian L, Ju X, et al. The development of Coronavirus 3C-Like protease (3CLpro) inhibitors from 2010 to 2020. Eur J Med Chem. 2020; 206: 112711.
  10. Owen DR, Allerton CMN, Anderson AS, Aschenbrenner L, Avery M, Berritt S, et al. An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19. Science. 2021; 374 (6575): 1586‒93.
  11. de Vries M, Mohamed AS, Prescott RA, Valero-Jimenez AM, Desvignes L, O’Connor R, et al. A comparative analysis of SARS-CoV-2 antivirals characterizes 3CLpro inhibitor PF-00835231 as a potential new treatment for COVID-19. J Virol. 2021; 95 (10): e01819‒20.
  12. Poreba M. Protease-activated prodrugs: strategies, challenges, and future directions. FEBS J. 2020; 287 (10): 1936‒69.
  13. Choi KY, Swierczewska M, Lee S, Chen X. Protease-activated drug development. Theranostics. 2012; 2 (2): 156‒78.
  14. Richter M, Leuthold MM, Graf D, Bartenschlager R, Klein CD. Prodrug activation by a viral protease: evaluating combretastatin peptide hybrids to selectively target infected cells. ACS Med Chem Lett. 2019; 10: 1115‒21.
  15. Boyce JH, Dang B, Ary B, Edmondson Q, Craik CS, Degrado WF, et al. Platform to Discover Protease-Activated Antibiotics and Application to Siderophore–Antibiotic Conjugates. J Am Chem Soc. 2020; 142 (51): 21310.