ORIGINAL RESEARCH

Tryptophan catabolites and predicted gut flora enzyme-encoding genes

About authors

1 Pirogov Russian National Research Medical University, Moscow, Russia

2 Peoples' Friendship University of Russia, Moscow, Russia

3 Center for Digital and Translational Biomedicine, Center for Molecular Health, Moscow, Russia

4 Kazan (Volga Region) Federal University, Kazan, Russia

5 Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia

6 Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Moscow, Russia

7 National Medical Research Center of Endocrinology, Moscow, Russia

Correspondence should be addressed: Olga P. Shatova
Ostrovityanova, 1, Moscow, 117997, Russia; moc.liamg@po.avotahs

About paper

Funding: the study was performed as part of the Assignment № 0373100122119000041 for the project “Creation of a bank of blood serum and fecal samples from healthy donors and patients with obesity, metabolic syndrome, type 2 diabetes mellitus, impaired mucosal barrier of the gastrointestinal tract with the aim of identifying candidate species-specific mediators of the quorum sensing human microbiota systems modulating the endocrine and metabolic function of adipose tissue”.

Author contribution: Shatova OP — primary data acquisition, statistical processing, manuscript writing and preparation of figures; Gaponov AM — manuscript writing; Grigoryeva TV — microbiome assessment; Vasiliev IYu — microbiome assessment and statistical data processing; Stoletova LS — data analysis; Makarov VV, Yudin SM — writing parts of the manuscript; Roumiantsev SA — study concept, manuscript editing; Shestopalov AV — study concept, data analysis, manuscript writing and editing.

Compliance with ethical standards: the study was approved by the Ethics Committee of the Pirogov Russian National Research Medical University (protocol No. 186 of 26 June 2019). All patients submitted the informed consent to the use of biomaterial for scientific purposes.

Received: 2023-06-21 Accepted: 2023-07-20 Published online: 2023-08-07
|

The signaling role of tryptophan and its catabolites is well known. However, their effects on the potential microbiota metabolic activity is still poorly understood. The study was aimed to assess concordance between changes in the predicted gut microbiome enzyme-encoding gene abundance and the tryptophan catabolites. The study involved 109 healthy volunteers and 114 obese patients. Quantification of tryptophan catabolites in the feces was performed by HPLC. Bacterial DNA was extracted from fecal samples, and the 16S rRNA gene V3-V4 region was sequenced. Primary processing of the sequencing data was performed using the QIIME v.1.9.1 tool. The alleged metabolic role of microbiota members was explored via reconstruction of unobservable states using PICRUSt. The maximum number of significant correlations between the unobservable states and the predicted gut microbiome enzyme-encoding gene abundance in obese individuals was reported for indole-3-lactate. A significant correlation between indole-3-lactate and the abundance of genes encoding the enzymes involved in metabolism of fructose, amino sugars, nucleotides, amino acids, polyamines, and sulfosaccharides was revealed. It has been found that obese patients show a threefold increase in the indole-3lactate-producing microbiota. It has been shown that in obese individuals microbial population of the intestine is represented by the totally different genera and species of microorganisms. It is concluded that indole-3-lactate has a significant effect on the predicted gut microbiome enzyme-encoding gene abundance in obese patients.

Keywords: gut microbiome, tryptophan metabolites, indole-3-lactate, indole, microbial tryptophan catabolites (MICT)

КОММЕНТАРИИ (0)