ORIGINAL RESEARCH

Clinical significance of cytokine counting in patients with multiple sclerosis and its relationship with herpes infection

Baranova NS1, Gris MS1, Baranov AA1, Spirin NN1, Artyuhov AS2, Shakirova KM2, Nasonov EL3,4
About authors

1 Yaroslavl State Medical University, Yaroslavl, Russia

2 Pirogov Russian National Research Medical University, Moscow, Russia

3 Nasonova Research Institute of Rheumatology, Moscow, Russia

4 Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia

Correspondence should be addressed: Natalia S. Baranova
Revolutsionnaya, 5, Yaroslavl, 150000, Russia; ur.liam@sn_avonarab

About paper

Funding: the work was supported by the Innovations Assistance Fund within the framework of the UMNIK program: Participant of the youth scientific and innovative competition (contracts № 3560GU1/2014 of 23.09.2014, № 8815GU2/2015 of 17.12.2015).

Author contribution: NS Baranova, MC Gris — study planning and design, data analysis, manuscript authoring; MC Gris, AS Artyukhov, KM Shakirova — data collection and research; AA Baranov — data analysis; all autors — manuscript editing.

Compliance with ethical standards: the study was approved by the Ethics Committee of the Yaroslavl State Medical University (Minutes № 1 of October 1, 2013). All patients signed a voluntary informed consent.

Received: 2023-07-24 Accepted: 2023-08-20 Published online: 2023-08-31
|
  1. Boyko AN, Khachanova NV, Melnikov MV, Sivertseva SA, Evdoshenko EP, Spirin NN, i dr. Novye napravleniya immunokorrekcii pri rasseyannom skleroze. Zhurnal nevrologii i psixiatrii im. S. S. Korsakova. 2020; 120 (2): 103‒9. DOI: 10.17116/jnevro2020120021103. Russian.
  2. Göbel K, Ruck T, Meuth SG. Cytokine signaling in multiple sclerosis: Lost in translation. Mult Scler J 2018; 24 (4): 432–9. DOI: 10.1177/ 1352458518763094.
  3. D'Angelo C, Reale M, Costantini E, Di Nicola M, Porfilio I, de Andrés C, et al. Profiling of Canonical and Non-Traditional Cytokine Levels in Interferon-β-Treated Relapsing–Remitting-Multiple Sclerosis Patients. Front Immunol. 2018, 9: 1240. DOI: 10.3389/fimmu.2018.01240.
  4. Boyko AN, Smirnova NF, Zolotova SN, Gusev EI. Ehpidemiologiya i ehtiologiya rasseyannogo skleroza. Consilium Medicum. 2008; 10 (7): 5‒8. Russian.
  5. Pietropaolo V, Fioriti D, Mischitelli M, Anzivino E, Santini M, Millefiorini E, et al. Detection of human herpesviruses and polyomaviruses DNA in a group of patients with relapsing-remitting multiple sclerosis. New Microbiol. 2005; 28 (3): 199‒203.
  6. Sotelo J, Ordonez G, Pineda B, Flores J. The participation of varicella zoster virus in relapses of multiple sclerosis. Clin Neurol Neurosurg. 2014; 119: 44‒8. DOI: 10.1016/j.clineuro.2013.12.020.
  7. Engdahl E, Gustafsson R, Huang J, Biström M, Lima Bomfim I, Stridh P, et al. Increased Serological Response Against Human Herpesvirus 6A Is Associated With Risk for Multiple Sclerosis. Front Immunol. 2019; 10: 2715. DOI: 10.3389/fimmu.2019.02715.23.
  8. Popova EV, Boyko AN, Khachanova NV, Sharanova SN. Virus Ehpshtejna‒Barr v patogeneze rasseyannogo skleroza (obzor). Zhurnal nevrologii i psixiatrii im. S.S. Korsakova. Specvypuski. 2014; 114 (2‒2): 29‒34. Russian.
  9. Attfield KE, Jensen LT, Kaufmann M, Friese MA, Fugger L. The immunology of multiple sclerosis. Nat Rev Immunol. 2022; 22: 734–50. DOI: 10.1038/s41577-022-00718-z.
  10. Bjornevik K, Cortese M, Healy BC, Kuhle J, Mina MJ, Leng Y, et al. Longitudinal analysis reveals high prevalence of Epstein‒Barr virus associated with multiple sclerosis. Science. 2022; 375 (6578): 296‒301. DOI: 10.1126/science.abj8222.
  11. Bjornevik K, Münz C, Cohen JI, Ascherio A. Epstein‒Barr virus as a leading cause of multiple sclerosis: mechanisms and implications. Nat Rev Neurol. 2023; 19 (3): 160‒171. DOI: 10.1038/s41582-023-00775-5.
  12. Aghbash PS, Hemmat N, Nahand JS, Shamekh A, Memar MY, Babaei A, et al. The role of Th17 cells in viral infections. Int Immunopharmacol. 2021; 91: 107331. DOI: 10.1016/j.intimp.2020.107331.
  13. Vorobeva AA, Ivanova MV, Fominyx VV, Zaharova MN, Zigangirova NA, Gulyaeva NV. Biomarkery rasseyannogo skleroza (obzor i sobstvennye dannye). Zhurnal nevrologii i psixiatrii im. S.S. Korsakova. Specvypuski. 2013; 113 (10‒2): 23‒31. Russian.
  14. D'Ambrosio A, Pontecorvo S, Colasanti T, Zamboni S, Francia A, Margutti P. Peripheral blood biomarkers in multiple sclerosis. Autoimmun. Rev. 2015; 14: 1097–110. DOI: 10.1016/j.autrev.2015.07.014 1568-9972.
  15. Melamud MM, Ermakov EA, Boiko AS, Kamaeva DA, Sizikov AE, Ivanova SA, et al. Multiplex Analysis of Serum Cytokine Profiles in Systemic Lupus Erythematosus and Multiple Sclerosis. Int J Mol Sci. 2022; 23: 13829. DOI: 10.3390/ijms232213829.
  16. Christophi GP, Gruber RC, Panos M, Christophi RL, Jubelt B, Massa PT. Interleukin-33 upregulation in peripheral leukocytes and CNS of multiple sclerosis patients. Clin Immunol. 2012; 142 (3): 308‒19. DOI: 10.1016/j.clim.2011.11.007.
  17. Sosvorova L, Kanceva R, Vcelak J, Kancheva L, Mohapl M, Starka L, et al. The comparison of selected cerebrospinal fluid and serum cytokine levels in patients with multiple sclerosis and normal pressure hydrocephalus. Neuro Endocrinol Lett. 2015; 36 (6): 564‒71. PMID: 26812299.
  18. Alsahebfosoul F, Rahimmanesh I, Shajarian M, Etemadifar M, Sedaghat N, Hejazi Z, et al. Interleukin-33 plasma levels in patients with relapsing-remitting multiple sclerosis. BioMol Concepts. 2017; 8 (1): 55–60. DOI: 10.1515/bmc-2016-0026.
  19. de J Guerrero-García J, Rojas-Mayorquín AE, Valle Y, Padilla-Gutiérrez JR, Castañeda-Moreno VA, Mireles-Ramírez MA, et al. Decreased serum levels of sCD40L and IL-31 correlate in treated patients with Relapsing-Remitting Multiple Sclerosis. Immunobiology. 2018; 223: 135–41. DOI: 10.1016/j.imbio.2017.10.001.
  20. Franzoi AEA, Gonçalves MVM, Nascimento O, Becker J. Interleukin 31 and Mast Cells: A New Piece in the Puzzle of the Pathophysiology of Multiple Sclerosis? Int J Brain Disord Treat. 2018; 4: 026. DOI: 10.23937/2469-5866/1410026.
  21. Maier S, Motataianu A, Barcutean L, Balint A, Hutanu A, Zoltan B, et al. A Interferon-β 1a, an immunomodulatory in relapsing remitting multiple sclerosis patients. The effect on pro-inflammatory cytokines. Farmacia. 2020; 68 (1): 65‒75. DOI: 10.31925/farmacia.2020.1.10.
  22. Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011; 69 (2): 292‒302. DOI: 10.1002/ana.22366.
  23. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology. 1983; 33: 1444‒52. DOI: 10.1212/WNL.33.11.1444.
  24. Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sørensen PS, Thompson AJ, et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. 2014; 83 (3): 278‒286. DOI: 10.1212/WNL.0000000000000560.
  25. Boyko AN, Guseva MR, Khachanova NV, Gusev EI. Voprosy sovremennoj terminologii pri rasseyannom skleroze. Zhurnal nevrologii i psixiatrii im. S. S. Korsakova. Specvypuski. 2018; 118 (8‒2): 121‒7. DOI: 10.17116/jnevro2018118082121. Russian.
  26. Bărcuţean LI, Romaniuc A, Maier S, Bajko Z, Moţăţăianu A, Adina H, et al. Clinical and serological biomarkers of treatment’s response in multiple sclerosis patients treated continuously with interferonβ-1b for more than a decade. CNS Neurol Disord Drug Targets. 2018; 17 (10): 780‒92. DOI: 10.2174/1871527317666180917095256.
  27. Ad'hiah AH, Salman ED. Predictive Significance of Interleukins 17A and 33 in Risk of Relapsing–Remitting Multiple Sclerosis. Baghdad Science J. 2022; 1191‒200. DOI: 10.21123/bsj.2022.6431.
  28. Mado H, Adamczyk-Sowa M, Bartman W, Wierzbicki K, Tadeusiak B, Sowa P. Plasma Interleukin-33 level in relapsing-remitting multiple sclerosis. Is it negatively correlated with central nervous system lesions in patients with mild disability? Clin Neurol Neurosurg. 2021; 206: 106700. DOI: 10.1016/j.clineuro.2021.106700.
  29. Melnikov MV, Sharanova SN, Konovalova OE, Smirnova NF, Pashhenkov MV, Bojko AN. Vliyanie glatiramera acetata na funkcionirovanie Th1- i Th17-kletok u bol'nyx rasseyannym sklerozom. Zhurnal nevrologii i psixiatrii im. S. S. Korsakova. 2018; 8 (2): 151. DOI: 10.17116/jnevro2018118082121. Russian.
  30. Ospelnikova TP, Morozova OV, Isaeva EI, Lizhdvoj VYu, Kolodyazhnaya LV, Andreeva SA, i dr. Monitoring citokinov u bol'nyx rasseyannym sklerozom v processe lecheniya preparatom IFNβ-1a. Zhurnal nevrologii i psixiatrii im. S. S. Korsakova. Specvypuski. 2015; 115 (8‒2): 71‒71. Russian.
  31. Yakushina TI, Lizhdvoj VYu, Vasilenko IA, Andryuhina OM, Kotov SV. Dopolnitel'nye pokazateli dlya ocenki ehffektivnosti terapii rasseyannogo skleroza (predvaritel'nye dannye). Zhurnal nevrologii i psixiatrii im. S. S. Korsakova. Specvypuski. 2013; 113 (2‒2): 61‒65. Russian.
  32. Sursyakova NV, Bajdina TV, Kuklina EM, Trushnikova TN, Ozhgibesova TV. Faktory, reguliruyushhie aktivnost' V-limfocitov, kak potencial'nye biomarkery rasseyannogo skleroza. Zhurnal nevrologii i psixiatrii im. S. S. Korsakova. Specvypuski. 2019; 119 (2‒2): 24‒27. DOI: 10.17116/jnevro20191192224. Russian.
  33. Soldan SS, Lieberman PM. Epstein‒Barr virus and multiple sclerosis. Nat Rev Microbiol. 2023; 21 (1): 51‒64. DOI: 10.1038/s41579-022-00770-5;
  34. Pender MP, Csurhes PA, Burrows JM, Burrows SR. Defective T-cell control of Epstein‒Barr virus infection in multiple sclerosis. Clin Transl Immunology. 2017; 6 (1): e126. DOI: 10.1038/cti.2016.87.
  35. Grut V, Biström M, Salzer J, Stridh P, Jons D, Gustafsson R, et al. Cytomegalovirus seropositivity is associated with reduced risk of multiple sclerosis-a presymptomatic case-control study. Eur J Neurol. 2021; 28 (9): 3072‒9. DOI: 10.1111/ene.14961.
  36. Zhao J, Qin C, Liu Y, Rao Y, Feng P. Herpes simplex virus and pattern recognition receptors: an arms race. Front Immunol. 2021; 11: 613799. DOI: 10.3389/fimmu.2020.613799.
  37. Najafi S, Ghane M, Poortahmasebi V, Jazayeri S, Yousefzadeh-Chabok, S. Prevalence of herpes simplex virus in patients with relapsing-remitting multiple sclerosis: a case-control study in the North of Iran. Arch Clin Infect Dis. 2016; 11: e36576. DOI: 10.5812/archcid.36576.
  38. Duarte LF, Farıas MA, A ́lvarez DM, Bueno SM, Riedel CA, González PA. Herpes simplex virus type 1 infection of the central nervous system: insights into proposed interrelationships with neurodegenerative disorders. Front Cell Neurosci. 2019; 13: 46. DOI: 10.3389/fncel.2019.00046.
  39. Gris MS, Baranova NS, Spirin NN, Kasatkin DS, Kiselev DV, Shipova EG. Rasseyannyj skleroz u pacientov s gerpesvirusnoj infekciej: osobennosti klinicheskoj kartiny i techeniya. Nevrologiya, nejropsixiatriya, psixosomatika. 2021; 13 (Pril. 1): 21–26. DOI: 10.14412/2074- 2711-2021-1S-21-26. Russian.
  40. Ferrante P, Mancuso R, Pagani E, Guerini FR, Calvo MG, Saresella M, et al. Molecular evidences for a role of HSV-1 in multiple sclerosis clinical acute attack. J Neurovirol. 2000; 6 (2): 109‒14. PMID: 10871797.
  41. Waubant E, Mowry EM, Krupp L, Chitnis T, Yeh EA, Kuntz N, Common viruses associated with lower pediatric multiple sclerosis risk. Neurology. 2011; 76 (23): 1989‒95. DOI: 10.1212/WNL.0b013e31821e552a.
  42. Goncharova ZA, Belovolova RA, Megeryan VA. Kliniko-immunologicheskie osobennosti rasseyannogo skleroza na fone reaktivacii persistiruyushhej gerpesvirusnoj infekcii. Saratovskij nauchno-medicinskij zhurnal 2018; 14 (1): 126–32. Russian.
  43. Kwilasz AJ, Grace PM, Serbedzija P, Maier SF, Watkins LR. The therapeutic potential of interleukin-10 in neuroimmune diseases. Neuropharmacology. 2015; 96: 55–57. DOI: 10.1016/j.neuropharm.2014.10.020.
  44. Rojas JM, Avia M, Martín V, Sevilla N. IL-10: A Multifunctional Cytokine in Viral Infections. J Immunol Res. 2017; 2017: 6104054. DOI: 10.1155/2017/6104054.
  45. Zhang L, Yuan S, Cheng G, Guo B. Type I IFN promotes IL10 production from T cells to suppress Th17 cells and Th17-associated autoimmune inflammation. PLoS One. 2011; 6 (12): 1‒11. DOI: 10.1371/journal.pone.0028432.
  46. Schönrich G, Abdelaziz MO, Raftery MJ. Epstein‒Barr virus, interleukin-10 and multiple sclerosis: A me´nage à trois. Front. Immunol. 2022; 13: 1028972. DOI: 10.3389/fimmu.2022.1028972.
  47. Jog NR, Chakravarty EF, Guthridge JM, James JA. Epstein Barr Virus Interleukin 10 Suppresses Anti-inflammatory Phenotype in Human Monocytes. Front. Immunol. 2018; 9: 2198. DOI: 10.3389/fimmu.2018.02198.
  48. Kang MS, Kieff E. Epstein‒Barr virus latent genes. Exp Mol Med. 2015; 47 (1): e131. DOI: 10.1038/emm.2014.84.
  49. Maertzdorf J, Osterhaus AD, Verjans GM. IL-17 expression in human herpetic stromal keratitis: modulatory effects on chemokine production by corneal fibroblasts. J Immunol. 2002; 169 (10): 5897‒903. DOI: 10.4049/jimmunol.169.10.5897.
  50. Fredj NB, Rizzo R, Bortolotti D, Nefzi F, Chebel S, Rotola A, et al., Evaluation of the implication of KIR2DL2 receptor in multiple sclerosis and herpesvirus susceptibility. J Neuroimmunol. 2014; 271 (1–2): 30–35. DOI: 10.1016/j.jneuroim.2014.03.017.
  51. Rizzo R, Bortolotti D, Fainardi E, Gentili V, Bolzani S, Baldi E, et al. KIR2DL2 inhibitory pathway enhances Th17 cytokine secretion by NK cells in response to herpesvirus infection in multiple sclerosis patients. J Neuroimmunol. 2016; 294: 1‒5. DOI: 10.1016/j.jneuroim.2016.03.007.
  52. Maier S, Simu M, Hutanu A, Barcutean L, Voidazan S, Bajko Z, et al. Clinical immunological correlations in patients with multiple sclerosis treated with natalizumab. Brain Sci. 2020; 10 (11): 802. DOI: 10.3390/brainsci10110802.
  53. Watford WT, Moriguchi M, Morinobu A, O'Shea JJ. The biology of IL-12: coordinating innate and adaptive immune responses. Cytokine Growth Factor Rev. 2003; 14: 361‒68. DOI: 10.1016/S1359-6101(03)00043-1.
  54. Broberg EK, Setala N, Eralinna JP, Salmi AA, Roytta M, Hukkanen V. Herpes simplex virus type 1 infection induces upregulation of interleukin-23 (p19) mRNA expression in trigeminal ganglia of BALB/c mice. J Interferon Cytokine Res. 2004; 22: 641‒51. DOI: 10.1089/10799900260100123.
  55. Di Salvo E, Ventura-Spagnolo E, Casciaro M, Navarra M, Gangemi S. IL-33/IL-31 axis: a potential inflammatory pathway. Mediator.Inflammat. 2018: 3858032. DOI: 10.1155/2018/3858032.
  56. Maier E, Werner D, Duschl A, Bohle B, Horejs-Hoeck J. Human Th2 but not Th9 cells release IL-31 in a STAT6/ NF-κB–dependent way. J Immunol. 2014; 193 (2): 645–54. DOI: 10.4049/jimmunol.1301836.
  57. Dong H, Zhang X, Qian Y. Mast cells and neuroinflammation. Med Sci Monit Basic Res. 2014; 20: 200‒6. DOI: 10.12659/MSMBR.893093.
  58. Nemmer JM, Kuchner M, Datsi A, Oláh P, Julia V, Raap U, et al. Interleukin-31 signaling bridges the gap between immune cells, the nervous system and epithelial tissues. Front Med. 2021; 8: 639097. DOI: 10.3389/fmed.2021.639097.
  59. Singh B, Jegga AG, Shanmukhappa KS, Edukulla R, Khurana Hershey GH, Medvedovic M, et al. IL-31-driven skin remodeling involves epidermal cell proliferation and thickening that lead to impaired skin-barrier function. PLoS One. 2016; 11 (8): e0161877. DOI: 10.1371/journal.pone.0161877.
  60. Yagi Y, Andoh A, Nishida A, Shioya M, Nishimura T, et al. Interleukin-31 stimulates production of inflammatory mediators from human colonic subepithelial myofibroblasts. Int J Mol Med. 2007; 19: 941–6. DOI: 10.3892/ijmm.19.6.941.
  61. Jafarzadeh A, Mahdavi R, Jamali M, Hajghani H, Nemati M, Ebrahimi HA. Increased concentrations of Interleukin-33 in the serum and cerebrospinal fluid of patients with multiple sclerosis. Oman Med J. 2016; 31 (1): 40–45. DOI: 10.5001/omj.2016.08.
  62. Griesenauer B, Paczesny S. The ST2/IL-33 axis in immune cells during inflammatory diseases. Front Immunol. 2017; 8: 475. DOI: 10.3389/fimmu.2017.00475.
  63. Peine M, Marek RM, Löhning M. IL-33 in T Cell Differentiation, Function, and Immune Homeostasis. Trends Immunol. 2016; 37 (5): 321‒33. DOI: 10.1016/j.it.2016.03.007.
  64. Jamali M, Rostami M, Gholamreza R, Sarab A, Mahdavi R. IL-33 polymorphism rs1929992 and its association with susceptibility to different pattern of multiple sclerosis. Tehran Univ Med J. 2018; 76 (7): 446‒51.
  65. Al-Naseri MAS, Salman ED, Ad'hiah AH. Genetic analysis of IL4 (rs2070874), IL17A (rs2275913), and IL33 (rs7044343) polymorphisms in Iraqi multiple sclerosis patients by using T-plex real-time PCR method. Meta Gene. 2022; 31: 100986. DOI: 10.1016/j.mgene.2021.100986.
  66. Ahmadi M, Fathi F, Fouladi S, Alsahebfosul F, Manian M, Eskandari N. Serum IL-33 level and IL-33, IL1RL1 gene polymorphisms in asthma and multiple sclerosis patients. Curr Mol Med. 2019; 19 (5): 357‒63. DOI: 10.2174/1566524019666190405120137.
  67. Allan D, Fairlie-Clarke KJ, Elliott CD, Schuh C, Barnett SC, Lassmann H, et al. Role of IL-33 and ST2 signalling pathway in multiple sclerosis: expression by oligodendrocytes and inhibition of myelination in central nervous system. Acta Neuropathol. Commun. 2016; 4 (1): 75. DOI: 10.1186/s40478-016-0344-1.
  68. Pei C, Barbour M, Fairlie-Clarke KJ, Allan D, Mu R, Jiang HR. Emerging role of interleukin-33 in autoimmune diseases. Immunology. 2014; 141: 9–1. DOI: 10.1111/imm.12174.
  69. Hudson CA, Christophi GP, Gruber RC, Wilmore JR, Lawrence DA, Massa PT. Induction of IL-33 expression and activity in central nervous system glia. J Leukocyte Biol. 2008; 84: 631–43. DOI: 10.1189/jlb.1207830.
  70. Zhang F, Tossberg JT, Spurlock CF, Yao SY, Aune TM, Sriram S. Expression of IL-33 and its epigenetic regulation in multiple sclerosis. Ann Clin Transl Neurol. 2014; 1: 307–18. DOI: 10.1002/acn3.47.
  71. Gadani SP, Walsh JT, Smirnov I, Zheng J, Kipnis J. The glia-derived alarmin IL-33 orchestrates the immune response and promotes recovery following CNS injury. Neuron. 2015; 85: 703–9. DOI: 10.1016/j.neuron.2015.01.013.
  72. Yasuoka S, Kawanokuchi J, Parajuli B, Jin S, Doi Y, Noda M, et al. Production and functions of IL-33 in the central nervous system. Brain Res. 2011; 1385: 8–17. DOI: 10.1016/j.brainres.2011.02.045.
  73. Kempuraj D, Khan MM, Thangavel R, Xiong Z, Yang E, Zaheer A. Glia maturation factor induces interleukin-33 release from astrocytes: implications for neurodegenerative diseases. J Neuroimmune Pharmacol. 2013; 8: 643–50. DOI: 10.1007/s11481-013-9439-7.
  74. Melnikov MV, Sviridova AA, Rogovskij VS, Boyko AN, Pashhenkov MV. Rol' makrofagov v razvitii nejrovospaleniya pri rasseyannom skleroze. Zhurnal nevrologii i psixiatrii im. S. S. Korsakova. 2022; 122 (5): 51‒56. DOI: 10.17116/jnevro202212205151. Russian.
  75. Franco R, Fernández-Suárez D. Alternatively activated microglia and macrophages in the central nervous system. Prog Neurobiol. 2015; 131: 65‒86. DOI: 10.1016/j.pneurobio.2015.05.003.
  76. Jiang HR, Milovanović M, Allan D, Niedbala W, Besnard AG, Fukada SY, et al. IL-33 attenuates EAE by suppressing IL-17 and IFN-γ production and inducing alternatively activated macrophages. Eur J Immunol. 2012; 42: 1804–14. DOI: 10.1002/eji.20114194718.
  77. Russi AE, Ebel ME, Yang Y, Brown MA. Male-specific IL-33 expression regulates sex-dimorphic EAE susceptibility. PNAS. 2018; 115 (7): E1520‒E1529. DOI: 10.1073/pnas.1710401115.
  78. Klose CS, Artis D. Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat Immunol. 2016; 17 (7): 765‒774. DOI: 10.1038/ni.3489.
  79. Braun H, Afonina IS, Mueller C, Beyaert R. Dichotomous function of IL-33 in health and disease: From biology to clinical implications. Biochemical Pharmacology. 2018; 148: 238–52. DOI: 10.1016/j.bcp.2018.01.0100006-2952.
  80. Komai-Koma M, Gilchrist DS, McKenzie AN, Goodyear CS, Xu D, Liew FY. IL-33 activates B1 cells and exacerbates contact sensitivity. J Immunol. 2011; 186 (4): 2584–91. DOI: 10.4049/jimmunol.1002103.
  81. Sattler S, Ling GS, Xu D, Hussaarts L, Romaine A, Zhao H, et al. IL-10- producing regulatory B cells induced by IL-33 (Breg(IL-33)) effectively attenuate mucosal inflammatory responses in the gut. J Autoimmun. 2014; 50: 107–22. DOI: 10.1016/j.jaut.2014.01.032.
  82. Cayrol C, Girard J-Ph. Interleukin-33 (IL-33): a nuclear cytokine from the IL-1 family. Immunol Rev. 2018; 281: 154–168. DOI: 10.1111/imr.12619.
  83. Bertheloot D, Latz E, Franklin BS. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol Immunol. 2021; 18: 1106–21. DOI: 10.1038/s41423-020-00630-3.
  84. Lüthi AU, Cullen SP, McNeela EA, Duriez PJ, Afonina IS, Sheridan C, et al. Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases. Immunity. 2009; 31: 84–98. DOI: 10.1016/j.immuni.2009.05.007.
  85. Carriere V, Roussel L, Ortega N, Lacorre DA, Americh L, Aguilar L, et al. IL-33, the IL-1-like cytokine ligand for ST2 receptor, is a chromatin-associated nuclear factor in vivo. Proc Natl Acad Sci USA. 2007; 104 (1): 282–7. DOI: 10.1073/pnas.0606854104.
  86. Cayrol C, Girard JP. IL-33: an alarmin cytokine with crucial roles in innate immunity, inflammation and allergy. Curr Opin Immunol. 2014; 31: 31‒7. DOI: 10.1016/j.coi.2014.09.004.
  87. Ali S, Mohs A, Thomas M, Klare J, Ross R, Schmitz ML, et al. The dual function cytokine IL-33 interacts with the transcription factor NF-kappaB to dampen NF-kappaB-stimulated gene transcription. J Immunol. 2011; 187 (4): 1609–16. DOI: 10.4049/jimmunol.1003080.
  88. Lefrancais E, Roga S, Gautier V, Gonzalez-de-Peredo A, Monsarrat B, Girard JP, et al. IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G. Proc Natl Acad Sci USA. 2012; 109 (5): 1673–8. DOI: 10.1073/pnas.1115884109.
  89. Waern I, Lundequist A, Pejler G, Wernersson S. Mast cell chymase modulates IL-33 levels and controls allergic sensitization in dust-mite induced airway inflammation. Mucosal Immunol. 2013; 6 (5): 911–20. DOI: 10.1038/ mi.2012.129.
  90. Lefrancais E, Duval A, Mirey E, Roga S, Espinosa E, Cayrol C, et al. Central domain of IL-33 is cleaved by mast cell proteases for potent activation of group-2 innate lymphoid cells. Proc Natl Acad Sci U S A. 2014; 111 (43): 15502–7. DOI: 10.1073/pnas.1410700111.
  91. Hirose S, Jahani PS, Wang S, Jaggi U, Tormanen K, Yu J, et al. Type 2 innate lymphoid cells induce CNS demyelination in an HSV-IL-2 mouse model of multiple sclerosis. iScience. 2020; 23 (10): 101549. DOI: 10.1016/j.isci.2020.101549.
  92. Ofengeim D, Ito Y, Najafov A, Zhang Y, Shan B, DeWitt JP, et al. Activation of necroptosis in multiple sclerosis. Cell Rep. 2015; 10: 1836–49. DOI: 10.1016/j.celrep.2015.02.051.
  93. Verzosa AL, McGeever LA, Bhark SJ, Delgado T, Salazar N, Sanchez EL. Herpes simplex virus 1 infection of neuronal and nonneuronal cells elicits specific innate immune responses and immune evasion mechanisms. Front Immunol. 2021; 12: 644664. DOI: 10.3389/fimmu.2021.644664.
  94. Zhao J, Qin C, Liu Y, Rao Y, Feng P. Herpes simplex virus and pattern recognition receptors: an arms race. Front. Immunol. 2021; 11: 613799. DOI: 10.3389/fimmu.2020.613799.
  95. Kaiser WJ, Upton JW, Mocarski ES. Receptor-interacting protein homotypic interaction motif-dependent control of NF-kappa B activation via the DNA dependent activator of IFN regulatory factors. J Immunol. 2008; 181: 6427–34. DOI: 10.4049/jimmunol.181.9.6427 104.
  96. Nile CJ, Barksby E, Jitprasertwong P, Preshaw PM, Taylor JJ. Expression and regulation of interleukin-33 in human monocytes. Immunology. 2010; 130 (2): 172‒80. DOI: 10.1111/j.1365-2567.2009.03221.x.
  97. Zhang L, Lu R, Zhao G, Pflugfelder SC, Li DQ. TLR-mediated induction of pro-allergic cytokine IL-33 in ocular mucosal epithelium. Int J Biochem Cell Biol. 2011; 43: 1383–91. DOI: 10.1016/j.biocel.2011.06.003.
  98. Furue M, Yamamura K, Kido-Nakahara M, Nakahara T, Fukui Y. Emerging role of interleukin-31 and interleukin-31 receptor in pruritus in atopic dermatitis. Allergy. 2018; 73 (1): 29–36. DOI: 10.1111/all.13239.
  99. Ellermann-Eriksen S. Macrophages and cytokines in the early defence against herpes simplex virus. Virology J. 2005; 2: 59. DOI: 10.1186/1743-422X-2-59.
  100. Roychoudhury P, Swan DA, Duke E, Corey L, Zhu J, Davé V, et al. Tissue-resident T cell–derived cytokines eliminate herpes simplex virus-2–infected cells. J Clin Invest. 2020; 130 (6): 2903–19. DOI: 10.1172/JCI132583.
  101. Bello-Morales R, Andreu S, López-Guerrero JA. The role of herpes simplex virus type 1 infection in demyelination of the central nervous system. Int J Mol Sci. 2020; 21 (14): 5026. DOI: 10.3390/ijms21145026.
  102. Sun Y, Wen Y, Wang L, Wen L, You W, Wei S, et al. Therapeutic opportunities of interleukin-33 in the central nervous system. Front Immunol. 2021; 12: 654626. DOI: 10.3389/fimmu.2021.654626.