ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ

Получение рекомбинантного ингибитора рибонуклеаз в E. coli для использования в синтезе мРНК in vitro

М. В. Захарова1, А. А. Загоскин1,2, Р. А. Иванов2, М. О. Нагорных1,2
Информация об авторах

1 Институт биохимии и физиологии микроорганизмов Российской академии наук, Пущино, Россия

2 Научно-технологический университет «Сириус», Сочи, Россия

Для корреспонденции: Максим Олегович Нагорных
Проспект Науки, д. 5, г. Пущино, 142290, Россия; moc.liamg@rennabred

Информация о статье

Финансирование: работа выполнена при поддержке программы Министерства высшего образования и науки РФ (соглашение №. 075-10-2021-113, уникальный номер проекта RF----193021X0001).

Вклад авторов: М. В. Захарова — подбор условий наработки рекомбинантых белков, эксперименты по наработке в разных штаммах E. coli; А. А. Загоскин — хроматографическая очистка рекомбинантных белков; М. О. Нагорных — концепция работы, создание генетических конструкций, написание статьи; Р. А. Иванов — общее руководство.

Статья получена: 16.11.2023 Статья принята к печати: 17.12.2023 Опубликовано online: 31.12.2023
|
  1. Moenner M, Vosoghi M, Ryazantsev S, Glitz DG. Ribonuclease inhibitor protein of human erythrocytes: characterization, loss of activity in response to oxidative stress, and association with Heinz bodies. Blood Cells, Molecules, and Diseases. 1998; 24 (2): 149– 64. DOI: 10.1006/bcmd.1998.0182.
  2. Klink TA, Vicentini AM, Hofsteenge J, Raines RT High-level soluble production and characterization of porcine ribonuclease inhibitor. Protein expression and purification. 2001; 22 (2): 174–79. DOI: 10.1006/prep.2001.1422.
  3. Kobe B, Deisenhofer J. Mechanism of ribonuclease inhibition by ribonuclease inhibitor protein based on the crystal structure of its complex with ribonuclease A. Journal of molecular biology. 1996; 264 (5): 1028–43. DOI: 10.1006/jmbi.1996.0694.
  4. Guo W, Cao L, Jia Z, Wu G, Li T, Lu F, et al. High level soluble production of functional ribonuclease inhibitor in Escherichia coli by fusing it to soluble partners. Protein expression and purification. 2011; 77 (2): 185–92. DOI: 10.1016/j.pep.2011.01.015.
  5. Dickson KA, Haigis MC, Raines RT. Ribonuclease inhibitor: structure and function. Progress in nucleic acid research and molecular biology. 2005; 80: 349–74. DOI: 10.1016/S0079-6603(05)80009-1.
  6. Fominaya JM, Hofsteenge J. Inactivation of ribonuclease inhibitor by thiol-disulfide exchange. Journal of Biological Chemistry. 1992; 267 (34): 24655–60.
  7. Kobe B, Kajava AV. The leucine-rich repeat as a protein recognition motif. Current opinion in structural biology. 2001; 11 (6): 725–32. DOI: 10.1016/s0959-440x(01)00266-4.
  8. Blackburn P. Ribonuclease inhibitor from human placenta: rapid purification and assay. Journal of Biological Chemistry. 1979; 254 (24): 12484–7.
  9. Rosano GL, Ceccarelli EA. Recombinant protein expression in Escherichia coli: advances and challenges. Frontiers in microbiology. 2014; 5: 172. DOI: 10.3389/fmicb.2014.00172.
  10. Lee FS, Vallee BL. Expression of human placental ribonuclease inhibitor in Escherichia coli. Biochemical and biophysical research communications. 1989; 160 (1): 115–20. DOI: 10.1016/0006-291x(89)91628-8.
  11. Šiurkus J, Neubauer P. Reducing conditions are the key for efficient production of active ribonuclease inhibitor in Escherichia coli. Microbial Cell Factories. 2011; 10 (1): 1–15. DOI: 10.1186/1475-2859-10-31.
  12. Šiurkus J, Neubauer P. Heterologous production of active ribonuclease inhibitor in Escherichia coli by redox state control and chaperonin coexpression. Microbial cell factories. 2011; 10: 1–11. DOI: 10.1186/1475-2859-10-65.
  13. Ohana RF, Encell LP, Zhao K, Simpson D, Slater MR, Urh M, et al. HaloTag7: A genetically engineered tag that enhances bacterial expression of soluble proteins and improves protein purification. Protein Expression and Purification. 2009; 68 (1): 110–20. DOI: 10.1016/j.pep.2009.05.010.
  14. Nishihara K, Kanemori M, Kitagawa M, Yanagi H, Yura, T. Chaperone coexpression plasmids: differential and synergistic roles of DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, in Escherichia coli. Appl. Environ Microbiol. 1998; 64: 1694–99. DOI: 10.1128/AEM.64.5.1694-1699.
  15. Nishihara K, Kanemori M, Yanagi H, Yura T. Overexpression of trigger factor prevents aggregation of recombinant proteins in Escherichia coli. Appl. Environ Microbiol. 2000; 66: 884–89. DOI: 10.1128/AEM.66.3.884-889.2000.
  16. Захарова М. В., Нагорных М. О. Получение бактериального продуцента ДНК-зависимой РНК-полимеразы бактериофага Т7 для синтеза РНК in vitro. Международный журнал прикладных и фундаментальных исследований. 2022; 12: 9–14. DOI: 10.17513/mjpfi.13476.
  17. Fuchs AL, Neu A, Sprangers R. A general method for rapid and cost-efficient large-scale production of 5' capped RNA. RNA. 2016; 22 (9): 1454–66. DOI: 10.1261/rna.056614.116.
  18. Ortega C, Oppezzo P, Correa A. Overcoming the Solubility Problem in E. coli: Available Approaches for Recombinant Protein Production. Methods Mol Biol. 2022; 2406: 35–64. DOI: 10.1007/978-1-0716-1859-2_2.
  19. Jia B, Jeon CO. High-throughput recombinant protein expression in Escherichia coli: current status and future perspectives. Open biology. 2016; 6 (8): 160196. DOI: 10.1098/rsob.160196.
  20. Morão LG, Manzine LR, Clementino LOD, Wrenger C, Nascimento AS. A scalable screening of E. coli strains for recombinant protein expression. PLOS ONE 2022; 17 (7): e0271403. DOI: 10.1371/journal.pone.0271403.
  21. Zhang ZX, Nong FT, Wang YZ, Yan CX, Gu Y, Song P, et al. Strategies for efficient production of recombinant proteins in Escherichia coli: alleviating the host burden and enhancing protein activity. Microb Cell Fact. 2022; 21 (191). DOI: 10.1186/s12934-022-01917-y.
  22. Flachner B, Dobi K, Benedek A, Cseh S, Lőrincz Z, Hajdú I. Robust Recombinant Expression of Human Placental Ribonuclease Inhibitor in Insect Cells. Biomolecules. 2022; 12 (2): 273. DOI: 10.3390/biom12020273.
  23. Mital S, Christie G, Dikicioglu D. Recombinant expression of insoluble enzymes in Escherichia coli: a systematic review of experimental design and its manufacturing implications. Microb Cell Fact. 2021; 20 (1): 208. DOI: 10.1186/s12934-021-01698-w.