ORIGINAL RESEARCH

Preparation of a recombinant ribonuclease inhibitor in E. coli for use in mRNA synthesis in vitro

Zakharova MV1, Zagoskin AA1,2, Ivanov RA2, Nagornykh MO1,2
About authors

1 Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Russia

2 Sirius University of Science and Technology, Sirius, Sochi, Russia

Correspondence should be addressed: Maxim O. Nagornykh
Prospekt Nauki, 5, Pushchino, 142290, Russia; moc.liamg@rennabred

About paper

Funding: the study was financially supported in the context of the program of Ministry of higher education and science of the Russian Federation (agreement #075-10-2021-113, unique project number RF----193021X0001).

Author contribution: Zakharov MV — selection of conditions of production of recombinant proteins, production experiments in different E. coli strains; Zagoskin AA — chromatographic clearing of recombinant proteins; Nagornykh MO — conceptualization, design of genetic constructs, article authoring; Ivanov RA — general management.

Received: 2023-11-16 Accepted: 2023-12-17 Published online: 2023-12-31
|
  1. Moenner M, Vosoghi M, Ryazantsev S, Glitz DG. Ribonuclease inhibitor protein of human erythrocytes: characterization, loss of activity in response to oxidative stress, and association with Heinz bodies. Blood Cells, Molecules, and Diseases. 1998; 24 (2): 149– 64. DOI: 10.1006/bcmd.1998.0182.
  2. Klink TA, Vicentini AM, Hofsteenge J, Raines RT High-level soluble production and characterization of porcine ribonuclease inhibitor. Protein expression and purification. 2001; 22 (2): 174–79. DOI: 10.1006/prep.2001.1422.
  3. Kobe B, Deisenhofer J. Mechanism of ribonuclease inhibition by ribonuclease inhibitor protein based on the crystal structure of its complex with ribonuclease A. Journal of molecular biology. 1996; 264 (5): 1028–43. DOI: 10.1006/jmbi.1996.0694.
  4. Guo W, Cao L, Jia Z, Wu G, Li T, Lu F, et al. High level soluble production of functional ribonuclease inhibitor in Escherichia coli by fusing it to soluble partners. Protein expression and purification. 2011; 77 (2): 185–92. DOI: 10.1016/j.pep.2011.01.015.
  5. Dickson KA, Haigis MC, Raines RT. Ribonuclease inhibitor: structure and function. Progress in nucleic acid research and molecular biology. 2005; 80: 349–74. DOI: 10.1016/S0079-6603(05)80009-1.
  6. Fominaya JM, Hofsteenge J. Inactivation of ribonuclease inhibitor by thiol-disulfide exchange. Journal of Biological Chemistry. 1992; 267 (34): 24655–60.
  7. Kobe B, Kajava AV. The leucine-rich repeat as a protein recognition motif. Current opinion in structural biology. 2001; 11 (6): 725–32. DOI: 10.1016/s0959-440x(01)00266-4.
  8. Blackburn P. Ribonuclease inhibitor from human placenta: rapid purification and assay. Journal of Biological Chemistry. 1979; 254 (24): 12484–7.
  9. Rosano GL, Ceccarelli EA. Recombinant protein expression in Escherichia coli: advances and challenges. Frontiers in microbiology. 2014; 5: 172. DOI: 10.3389/fmicb.2014.00172.
  10. Lee FS, Vallee BL. Expression of human placental ribonuclease inhibitor in Escherichia coli. Biochemical and biophysical research communications. 1989; 160 (1): 115–20. DOI: 10.1016/0006-291x(89)91628-8.
  11. Šiurkus J, Neubauer P. Reducing conditions are the key for efficient production of active ribonuclease inhibitor in Escherichia coli. Microbial Cell Factories. 2011; 10 (1): 1–15. DOI: 10.1186/1475-2859-10-31.
  12. Šiurkus J, Neubauer P. Heterologous production of active ribonuclease inhibitor in Escherichia coli by redox state control and chaperonin coexpression. Microbial cell factories. 2011; 10: 1–11. DOI: 10.1186/1475-2859-10-65.
  13. Ohana RF, Encell LP, Zhao K, Simpson D, Slater MR, Urh M, et al. HaloTag7: A genetically engineered tag that enhances bacterial expression of soluble proteins and improves protein purification. Protein Expression and Purification. 2009; 68 (1): 110–20. DOI: 10.1016/j.pep.2009.05.010.
  14. Nishihara K, Kanemori M, Kitagawa M, Yanagi H, Yura, T. Chaperone coexpression plasmids: differential and synergistic roles of DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, in Escherichia coli. Appl. Environ Microbiol. 1998; 64: 1694–99. DOI: 10.1128/AEM.64.5.1694-1699.
  15. Nishihara K, Kanemori M, Yanagi H, Yura T. Overexpression of trigger factor prevents aggregation of recombinant proteins in Escherichia coli. Appl. Environ Microbiol. 2000; 66: 884–89. DOI: 10.1128/AEM.66.3.884-889.2000.
  16. Zaharova MV, Nagornyh MO. Poluchenie bakterial'nogo producenta DNK-zavisimoj RNK-polimerazy bakteriofaga T7 dlja sinteza RNK in vitro. Mezhdunarodnyj zhurnal prikladnyh i fundamental'nyh issledovanij. 2022; 12: 9–14. DOI: 10.17513/mjpfi.13476. Russian.
  17. Fuchs AL, Neu A, Sprangers R. A general method for rapid and cost-efficient large-scale production of 5' capped RNA. RNA. 2016; 22 (9): 1454–66. DOI: 10.1261/rna.056614.116.
  18. Ortega C, Oppezzo P, Correa A. Overcoming the Solubility Problem in E. coli: Available Approaches for Recombinant Protein Production. Methods Mol Biol. 2022; 2406: 35–64. DOI: 10.1007/978-1-0716-1859-2_2.
  19. Jia B, Jeon CO. High-throughput recombinant protein expression in Escherichia coli: current status and future perspectives. Open biology. 2016; 6 (8): 160196. DOI: 10.1098/rsob.160196.
  20. Morão LG, Manzine LR, Clementino LOD, Wrenger C, Nascimento AS. A scalable screening of E. coli strains for recombinant protein expression. PLOS ONE 2022; 17 (7): e0271403. DOI: 10.1371/journal.pone.0271403.
  21. Zhang ZX, Nong FT, Wang YZ, Yan CX, Gu Y, Song P, et al. Strategies for efficient production of recombinant proteins in Escherichia coli: alleviating the host burden and enhancing protein activity. Microb Cell Fact. 2022; 21 (191). DOI: 10.1186/s12934-022-01917-y.
  22. Flachner B, Dobi K, Benedek A, Cseh S, Lőrincz Z, Hajdú I. Robust Recombinant Expression of Human Placental Ribonuclease Inhibitor in Insect Cells. Biomolecules. 2022; 12 (2): 273. DOI: 10.3390/biom12020273.
  23. Mital S, Christie G, Dikicioglu D. Recombinant expression of insoluble enzymes in Escherichia coli: a systematic review of experimental design and its manufacturing implications. Microb Cell Fact. 2021; 20 (1): 208. DOI: 10.1186/s12934-021-01698-w.