Авторские права: © 2023 принадлежат авторам. Лицензиат: РНИМУ им. Н.И. Пирогова.
Статья размещена в открытом доступе и распространяется на условиях лицензии Creative Commons Attribution (CC BY).

ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ

Создание генетически кодируемого светоиндуцируемого сенсора для визуализации ядрышка

П. А. Журлова, З. В. Беседовская, Е. Л. Соколинская, Л. В. Путляева
Информация об авторах

Сколковский институт науки и технологий, Центр молекулярной и клеточной биологии, Москва, Россия

Для корреспонденции: Лидия Викторовна Путляева
Большой бульвар, д. 30, стр. 1, Москва, Россия, 121205; ur.liam@avoliahkim.aidil

Информация о статье

Финансирование: работа была поддержана грантом РНФ № 22-24-01109.

Статья получена: 27.11.2023 Статья принята к печати: 11.12.2023 Опубликовано online: 17.12.2023
|
  1. Engbrecht M, Mangerich A. The Nucleolus and PARP1 in Cancer Biology. Cancers. 2020; 12.
  2. Bersaglieri C, Santoro R. Genome Organization in and around the Nucleolus. Cells. 2019; 8.
  3. Weeks SE, Metge BJ, Samant RS. The nucleolus: a central response hub for the stressors that drive cancer progression. Cell Mol Life Sci. 2019; 76: 4511–24.
  4. Treré D, Ceccarelli C, Montanaro L, Tosti E, Derenzini M. Nucleolar size and activity are related to pRb and p53 status in human breast cancer. J Histochem Cytochem. 2004; 52: 1601–7.
  5. Russo A, Russo G. Ribosomal Proteins Control or Bypass p53 during Nucleolar Stress. Int J Mol Sci. 2017; 18.
  6. Peddibhotla S, Wei Z, Papineni R, Lam MH, Rosen JM, Zhang P. The DNA damage effector Chk1 kinase regulates Cdc14B nucleolar shuttling during cell cycle progression. Cell Cycle. 2011; 10: 671–9.
  7. Andrique L, Fauvin D, El Maassarani M, Colasson H, Vannier B, Séité P. ErbB3(80 kDa), a nuclear variant of the ErbB3 receptor, binds to the Cyclin D1 promoter to activate cell proliferation but is negatively controlled by p14ARF. Cell Signal. 2012; 24: 1074–85.
  8. Sasaki M, Kawahara K, Nishio M, Mimori K, Kogo R, Hamada K, et al. Regulation of the MDM2-P53 pathway and tumor growth by PICT1 via nucleolar RPL11. Nat Med. 2011; 17: 944–51.
  9. Carotenuto P, Pecoraro A, Palma G, Russo G, Russo A. Therapeutic Approaches Targeting Nucleolus in Cancer. Cells. 2019; 8.
  10. Bywater MJ, Poortinga G, Sanij E, Hein N, Peck A, Cullinane C, et al. Inhibition of RNA polymerase I as a therapeutic strategy to promote cancer-specific activation of p53. Cancer Cell. 2012; 22: 51–65.
  11. Quin JE, Devlin JR, Cameron D, Hannan KM, Pearson RB, Hannan RD. Targeting the nucleolus for cancer intervention. Biochim Biophys Acta. 2014; 1842: 802–16.
  12. Chan JC, Hannan KM, Riddell K, Ng PY, Peck A, Lee RS, et al. AKT promotes rRNA synthesis and cooperates with c-MYC to stimulate ribosome biogenesis in cancer. Sci Signal. 2011; 4: ra56.
  13. Wall M, Poortinga G, Stanley KL, Lindemann RK, Bots M, Chan CJ, et al. The mTORC1 inhibitor everolimus prevents and treats Eμ-Myc lymphoma by restoring oncogene-induced senescence. Cancer Discov. 2013; 3: 82–95.
  14. Stenström L, Mahdessian D, Gnann C, Cesnik AJ, Ouyang W, Leonetti MD, et al. Mapping the nucleolar proteome reveals a spatiotemporal organization related to intrinsic protein disorder. Mol Syst Biol. 2020; 16: e9469.
  15. Farhy C, Hariharan S, Ylanko J, Orozco L, Zeng F-Y, Pass I, et al. Improving drug discovery using image-based multiparametric analysis of the epigenetic landscape. Elife. 2019; 8.
  16. Mayank, Rani R, Singh A, Garg N, Kaur N, Singh N. Mitochondria- and nucleolus-targeted copper(i) complexes with pyrazole-linked triphenylphosphine moieties for live cell imaging. Analyst. 2019; 145: 83–90.
  17. Mukherjee T, Soppina V, Ludovic R, Mély Y, Klymchenko AS, Collot M, et al. Live-cell imaging of the nucleolus and mapping mitochondrial viscosity with a dual function fluorescent probe. Org Biomol Chem. 2021; 19: 3389–95.
  18. Martin RM, Herce HD, Ludwig AK, Cardoso MC. Visualization of the Nucleolus in Living Cells with Cell-Penetrating Fluorescent Peptides. Methods Mol Biol. 2016; 1455: 71–82.
  19. Benedetti L, Marvin JS, Falahati H, Guillén-Samander A, Looger LL, De Camilli P. Optimized Vivid-derived Magnets photodimerizers for subcellular optogenetics in mammalian cells. Elife. 2020; 9.
  20. Werner S, Engler C, Weber E, Gruetzner R, Marillonnet S. Fast track assembly of multigene constructs using Golden Gate cloning and the MoClo system. Bioeng Bugs. 2012; 3: 38–43.
  21. Corman A, Sirozh O, Lafarga V, Fernandez-Capetillo O. Targeting the nucleolus as a therapeutic strategy in human disease. Trends Biochem Sci. 2023; 48: 274–87.
  22. Tan P, Hong T, Cai X, Li W, Huang Y, He L, et al. Optical control of protein delivery and partitioning in the nucleolus. Nucleic Acids Res. 2022; 50: e69.
  23. Gray NW, Weimer RM, Bureau I, Svoboda K. Rapid redistribution of synaptic PSD-95 in the neocortex in vivo. PLoS Biol. 2006; 4: e370.
  24. Grusch M, Schelch K, Riedler R, Reichhart E, Differ C, Berger W, et al. Spatio-temporally precise activation of engineered receptor tyrosine kinases by light. EMBO J. 2014; 33: 1713–26.
  25. van Bergeijk P, Adrian M, Hoogenraad CC, Kapitein LC. Optogenetic control of organelle transport and positioning. Nature. 2015; 518: 111–4.
  26. Duan L, Che D, Zhang K, Ong Q, Guo S, Cui B. Optogenetic control of molecular motors and organelle distributions in cells. Chem Biol. 2015; 22: 671–82.
  27. Lerner AM, Yumerefendi H, Goudy OJ, Strahl BD, Kuhlman B. Engineering Improved Photoswitches for the Control of Nucleocytoplasmic Distribution. ACS Synth Biol. 2018; 7: 2898–907.
  28. Niopek D, Wehler P, Roensch J, Eils R, Di Ventura B. Optogenetic control of nuclear protein export. Nat Commun. 2016; 7: 10624.
  29. van Haren J, Charafeddine RA, Ettinger A, Wang H, Hahn KM, Wittmann T. Local control of intracellular microtubule dynamics by EB1 photodissociation. Nat Cell Biol. 2018; 20: 252–61.
  30. Shin Y, Berry J, Pannucci N, Haataja MP, Toettcher JE, Brangwynne CP. Spatiotemporal Control of Intracellular Phase Transitions Using Light-Activated optoDroplets. Cell. 2017; 168: 159–71.e14.
  31. Dine E, Gil AA, Uribe G, Brangwynne CP, Toettcher JE. Protein Phase Separation Provides Long-Term Memory of Transient Spatial Stimuli. Cell Syst. 2018; 6: 655–63.e5.
  32. Niopek D, Benzinger D, Roensch J, Draebing T, Wehler P, Eils R, et al. Engineering light-inducible nuclear localization signals for precise spatiotemporal control of protein dynamics in living cells. Nat Commun. 2014; 5: 4404.