ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ

Создание генетически кодируемого светоиндуцируемого сенсора для визуализации ядрышка

П. А. Журлова, З. В. Беседовская, Е. Л. Соколинская, Л. В. Путляева
Информация об авторах

Сколковский институт науки и технологий, Центр молекулярной и клеточной биологии, Москва, Россия

Для корреспонденции: Лидия Викторовна Путляева
Большой бульвар, д. 30, стр. 1, Москва, Россия, 121205; ur.liam@avoliahkim.aidil

Информация о статье

Финансирование: работа была поддержана грантом РНФ № 22-24-01109.

Статья получена: 27.11.2023 Статья принята к печати: 11.12.2023 Опубликовано online: 17.12.2023
|
  1. Engbrecht M, Mangerich A. The Nucleolus and PARP1 in Cancer Biology. Cancers. 2020; 12.
  2. Bersaglieri C, Santoro R. Genome Organization in and around the Nucleolus. Cells. 2019; 8.
  3. Weeks SE, Metge BJ, Samant RS. The nucleolus: a central response hub for the stressors that drive cancer progression. Cell Mol Life Sci. 2019; 76: 4511–24.
  4. Treré D, Ceccarelli C, Montanaro L, Tosti E, Derenzini M. Nucleolar size and activity are related to pRb and p53 status in human breast cancer. J Histochem Cytochem. 2004; 52: 1601–7.
  5. Russo A, Russo G. Ribosomal Proteins Control or Bypass p53 during Nucleolar Stress. Int J Mol Sci. 2017; 18.
  6. Peddibhotla S, Wei Z, Papineni R, Lam MH, Rosen JM, Zhang P. The DNA damage effector Chk1 kinase regulates Cdc14B nucleolar shuttling during cell cycle progression. Cell Cycle. 2011; 10: 671–9.
  7. Andrique L, Fauvin D, El Maassarani M, Colasson H, Vannier B, Séité P. ErbB3(80 kDa), a nuclear variant of the ErbB3 receptor, binds to the Cyclin D1 promoter to activate cell proliferation but is negatively controlled by p14ARF. Cell Signal. 2012; 24: 1074–85.
  8. Sasaki M, Kawahara K, Nishio M, Mimori K, Kogo R, Hamada K, et al. Regulation of the MDM2-P53 pathway and tumor growth by PICT1 via nucleolar RPL11. Nat Med. 2011; 17: 944–51.
  9. Carotenuto P, Pecoraro A, Palma G, Russo G, Russo A. Therapeutic Approaches Targeting Nucleolus in Cancer. Cells. 2019; 8.
  10. Bywater MJ, Poortinga G, Sanij E, Hein N, Peck A, Cullinane C, et al. Inhibition of RNA polymerase I as a therapeutic strategy to promote cancer-specific activation of p53. Cancer Cell. 2012; 22: 51–65.
  11. Quin JE, Devlin JR, Cameron D, Hannan KM, Pearson RB, Hannan RD. Targeting the nucleolus for cancer intervention. Biochim Biophys Acta. 2014; 1842: 802–16.
  12. Chan JC, Hannan KM, Riddell K, Ng PY, Peck A, Lee RS, et al. AKT promotes rRNA synthesis and cooperates with c-MYC to stimulate ribosome biogenesis in cancer. Sci Signal. 2011; 4: ra56.
  13. Wall M, Poortinga G, Stanley KL, Lindemann RK, Bots M, Chan CJ, et al. The mTORC1 inhibitor everolimus prevents and treats Eμ-Myc lymphoma by restoring oncogene-induced senescence. Cancer Discov. 2013; 3: 82–95.
  14. Stenström L, Mahdessian D, Gnann C, Cesnik AJ, Ouyang W, Leonetti MD, et al. Mapping the nucleolar proteome reveals a spatiotemporal organization related to intrinsic protein disorder. Mol Syst Biol. 2020; 16: e9469.
  15. Farhy C, Hariharan S, Ylanko J, Orozco L, Zeng F-Y, Pass I, et al. Improving drug discovery using image-based multiparametric analysis of the epigenetic landscape. Elife. 2019; 8.
  16. Mayank, Rani R, Singh A, Garg N, Kaur N, Singh N. Mitochondria- and nucleolus-targeted copper(i) complexes with pyrazole-linked triphenylphosphine moieties for live cell imaging. Analyst. 2019; 145: 83–90.
  17. Mukherjee T, Soppina V, Ludovic R, Mély Y, Klymchenko AS, Collot M, et al. Live-cell imaging of the nucleolus and mapping mitochondrial viscosity with a dual function fluorescent probe. Org Biomol Chem. 2021; 19: 3389–95.
  18. Martin RM, Herce HD, Ludwig AK, Cardoso MC. Visualization of the Nucleolus in Living Cells with Cell-Penetrating Fluorescent Peptides. Methods Mol Biol. 2016; 1455: 71–82.
  19. Benedetti L, Marvin JS, Falahati H, Guillén-Samander A, Looger LL, De Camilli P. Optimized Vivid-derived Magnets photodimerizers for subcellular optogenetics in mammalian cells. Elife. 2020; 9.
  20. Werner S, Engler C, Weber E, Gruetzner R, Marillonnet S. Fast track assembly of multigene constructs using Golden Gate cloning and the MoClo system. Bioeng Bugs. 2012; 3: 38–43.
  21. Corman A, Sirozh O, Lafarga V, Fernandez-Capetillo O. Targeting the nucleolus as a therapeutic strategy in human disease. Trends Biochem Sci. 2023; 48: 274–87.
  22. Tan P, Hong T, Cai X, Li W, Huang Y, He L, et al. Optical control of protein delivery and partitioning in the nucleolus. Nucleic Acids Res. 2022; 50: e69.
  23. Gray NW, Weimer RM, Bureau I, Svoboda K. Rapid redistribution of synaptic PSD-95 in the neocortex in vivo. PLoS Biol. 2006; 4: e370.
  24. Grusch M, Schelch K, Riedler R, Reichhart E, Differ C, Berger W, et al. Spatio-temporally precise activation of engineered receptor tyrosine kinases by light. EMBO J. 2014; 33: 1713–26.
  25. van Bergeijk P, Adrian M, Hoogenraad CC, Kapitein LC. Optogenetic control of organelle transport and positioning. Nature. 2015; 518: 111–4.
  26. Duan L, Che D, Zhang K, Ong Q, Guo S, Cui B. Optogenetic control of molecular motors and organelle distributions in cells. Chem Biol. 2015; 22: 671–82.
  27. Lerner AM, Yumerefendi H, Goudy OJ, Strahl BD, Kuhlman B. Engineering Improved Photoswitches for the Control of Nucleocytoplasmic Distribution. ACS Synth Biol. 2018; 7: 2898–907.
  28. Niopek D, Wehler P, Roensch J, Eils R, Di Ventura B. Optogenetic control of nuclear protein export. Nat Commun. 2016; 7: 10624.
  29. van Haren J, Charafeddine RA, Ettinger A, Wang H, Hahn KM, Wittmann T. Local control of intracellular microtubule dynamics by EB1 photodissociation. Nat Cell Biol. 2018; 20: 252–61.
  30. Shin Y, Berry J, Pannucci N, Haataja MP, Toettcher JE, Brangwynne CP. Spatiotemporal Control of Intracellular Phase Transitions Using Light-Activated optoDroplets. Cell. 2017; 168: 159–71.e14.
  31. Dine E, Gil AA, Uribe G, Brangwynne CP, Toettcher JE. Protein Phase Separation Provides Long-Term Memory of Transient Spatial Stimuli. Cell Syst. 2018; 6: 655–63.e5.
  32. Niopek D, Benzinger D, Roensch J, Draebing T, Wehler P, Eils R, et al. Engineering light-inducible nuclear localization signals for precise spatiotemporal control of protein dynamics in living cells. Nat Commun. 2014; 5: 4404.