МНЕНИЕ

Потенциал неклассических клеточных культур для производства биотерапевтических белков

М. А. Добронос1,2, З. М. Осипова1,3, Н. М. Мышкина1
Информация об авторах

1 Институт биоорганической химии имени М. М. Шемякина и Ю. А. Овчинникова, Москва, Россия

2 Московский физико-технический институт, Долгопрудный, Россия

3 Российский национальный исследовательский медицинский университет имени Н. И. Пирогова, Москва, Россия

Для корреспонденции: Зинаида Михайловна Осипова
ул. Миклухо-Маклая, д. 16/10, г. Москва, 117997; ur.hcbi@avoksakz

Информация о статье

Финансирование: работа выполнена при поддержке гранта Российского научного фонда 21-74-10152, https://rscf.ru/project/21-74-10152/.

Благодарности: авторы благодарят А. Д. Барыкина из отдела биоорганической химии ИБХ РАН за плодотворное обсуждение идеи публикации.

Вклад авторов: М. А. Добронос — поиск и анализ литературы, написание рукописи; З. М. Осипова — руководство проектом, редактирование рукописи; Н. М. Маркина — идея рукописи, поиск и анализ литературы, написание рукописи.

Статья получена: 20.04.2024 Статья принята к печати: 12.05.2024 Опубликовано online: 13.06.2024
|
  1. Daboussi F, Lindley ND. Challenges to Ensure a Better Translation of Metabolic Engineering for Industrial Applications. In: Selvarajoo K, editor. Comput Biol Mach Learn Metab Eng Synth Biol., New York, NY: Springer US; 2023: 1–20. Available from: https://doi.org/10.1007/978-1-0716-2617-7_1.
  2. Rudge SR, Ladisch MR. Industrial Challenges of Recombinant Proteins. In: Silva AC, Moreira JN, Lobo JMS, Almeida H, editors. Curr Appl Pharm Biotechnol, Cham: Springer International Publishing; 2020: p. 1–22. Available from: https://doi.org/10.1007/10_2019_120.
  3. Meleady P, Doolan P, Henry M, Barron N, Keenan J, O’Sullivan F, et al. Sustained productivity in recombinant Chinese Hamster Ovary (CHO) cell lines: proteome analysis of the molecular basis for a process-related phenotype. BMC Biotechnol. 2011; 11: 78. Available from: https://doi.org/10.1186/1472-6750-11-78.
  4. Frei T, Cella F, Tedeschi F, Gutiérrez J, Stan G-B, Khammash M, et al. Characterization and mitigation of gene expression burden in mammalian cells. Nat Commun. 2020; 11: 4641. Available from: https://doi.org/10.1038/s41467-020-18392-x.
  5. Gutierrez JM, Feizi A, Li S, Kallehauge TB, Hefzi H, Grav LM, et al. Genome-scale reconstructions of the mammalian secretory pathway predict metabolic costs and limitations of protein secretion. Nat Commun. 2020; 11: 68. Available from: https://doi.org/10.1038/s41467-019-13867-y.
  6. Kaste JAM, Shachar-Hill Y. Model validation and selection in metabolic flux analysis and flux balance analysis. Biotechnol Prog. 2024; 40: e3413. Available from: https://doi.org/10.1002/btpr.3413.
  7. Eisenhut P, Marx N, Borsi G, Papež M, Ruggeri C, Baumann M, et al. Manipulating gene expression levels in mammalian cell factories: An outline of synthetic molecular toolboxes to achieve multiplexed control. New Biotechnol. 2024; 79: 1–19. Available from: https://doi.org/10.1016/j.nbt.2023.11.003.
  8. Kol S, Ley D, Wulff T, Decker M, Arnsdorf J, Schoffelen S, et al. Multiplex secretome engineering enhances recombinant protein production and purity. Nat Commun. 2020; 11: 1908. Available from: https://doi.org/10.1038/s41467-020-15866-w.
  9. Aviezer D, Brill-Almon E, Shaaltiel Y, Hashmueli S, Bartfeld D, Mizrachi S, et al. A Plant-Derived Recombinant Human Glucocerebrosidase Enzyme — A Preclinical and Phase I Investigation. PLOS ONE. 2009; 4: e4792. Available from: https://doi.org/10.1371/journal.pone.0004792.
  10. Fausther-Bovendo H, Kobinger G. Plant-made vaccines and therapeutics. Science 2021; 373: 740–1. Available from: https://doi.org/10.1126/science.abf5375.
  11. Hellwig S, Drossard J, Twyman RM, Fischer R. Plant cell cultures for the production of recombinant proteins. Nat Biotechnol. 2004; 22: 1415–22. Available from: https://doi.org/10.1038/nbt1027.
  12. Woo S-D, Roh JY, Choi JY, Jin BR. Propagation of Bombyx mori Nucleopolyhedrovirus in nonpermissive insect cell lines. J Microbiol Seoul Korea. 2007; 45: 133–8.
  13. Hong M, Li T, Xue W, Zhang S, Cui L, Wang H, et al. Genetic engineering of baculovirus-insect cell system to improve protein production. Front Bioeng Biotechnol. 2022; 10. Available from: https://doi.org/10.3389/fbioe.2022.994743.
  14. Hu Y-C, Yao K, Wu T-Y. Baculovirus as an expression and/or delivery vehicle for vaccine antigens. Expert Rev Vaccines. 2008; 7: 363– 71. Available from: https://doi.org/10.1586/14760584.7.3.363.
  15. Fernandes B, Castro R, Bhoelan F, Bemelman D, Gomes RA, Costa J, et al. Insect Cells for High-Yield Production of SARSCoV-2 Spike Protein: Building a Virosome-Based COVID-19 Vaccine Candidate. Pharmaceutics. 2022; 14: 854. Available from: https://doi.org/10.3390/pharmaceutics14040854.
  16. Struble LR, Smith AL, Lutz WE, Grubbs G, Sagar S, Bayles KW, et al. Insect cell expression and purification of recombinant SARSCOV-2 spike proteins that demonstrate ACE2 binding. Protein Sci. 2022; 31: e4300. Available from: https://doi.org/10.1002/pro.4300.
  17. Li T, Zheng Q, Yu H, Wu D, Xue W, Xiong H, et al. SARS-CoV-2 spike produced in insect cells elicits high neutralization titres in non-human primates. Emerg Microbes Infect. 2020; 9: 2076–90. Available from: https://doi.org/10.1080/22221751.2020.1821583.
  18. Fernandes B, Sousa M, Castro R, Schäfer A, Hauser J, Schulze K, et al. Scalable Process for High-Yield Production of PfCyRPA Using Insect Cells for Inclusion in a Malaria Virosome-Based Vaccine Candidate. Front Bioeng Biotechnol. 2022; 10. Available from: https://doi.org/10.3389/fbioe.2022.879078.
  19. Mabashi-Asazuma H, Kuo C-W, Khoo K-H, Jarvis DL. Modifying an Insect Cell N-Glycan Processing Pathway Using CRISPR-Cas Technology. ACS Chem Biol. 2015; 10: 2199–208. Available from: https://doi.org/10.1021/acschembio.5b00340.
  20. Strange K, Christensen M, Morrison R. Primary culture of Caenorhabditis elegans developing embryo cells for electrophysiological, cell biological and molecular studies. Nat Protoc. 2007; 2: 1003–12. Available from: https://doi.org/10.1038/nprot.2007.143.
  21. Espejo L, Hull B, Chang LM, DeNicola D, Freitas S, Silbar V, et al. Long-Term Culture of Individual Caenorhabditis elegans on Solid Media for Longitudinal Fluorescence Monitoring and Aversive Interventions. JoVE J Vis Exp. 2022: e64682. Available from: https://doi.org/10.3791/64682
  22. Hobbs DJ, Fryer SE, Duimstra JR, Hedstrom OR, Brodie AE, Collodi PA, et al. Culture of Cells from Juvenile Worms of Schistosoma mansoni. J Parasitol. 1993; 79: 913–21. Available from: https://doi.org/10.2307/3283730.
  23. Lazcano-Perez F, Roman-Gonzalez SA, Sanchez-Puig N, Espinosa RA-. Bioactive Peptides from Marine Organisms: A Short Overview. Protein Pept Lett. 2002; 19: 700–7. Available from: https://doi.org/10.2174/092986612800793208.
  24. Jayakrishnan A, Wan Rosli WR, Tahir ARM, Razak FSA, Kee PE, Ng HS, et al. Evolving Paradigms of Recombinant Protein Production in Pharmaceutical Industry: A Rigorous Review Sci. 2024; 6: 9. Available from: https://doi.org/10.3390/sci6010009.
  25. Cid R, Bolívar J. Platforms for Production of Protein-Based Vaccines: From Classical to Next-Generation Strategies. Biomolecules. 2021; 11: 1072. Available from: https://doi.org/10.3390/biom11081072.