Авторские права: © 2024 принадлежат авторам. Лицензиат: РНИМУ им. Н.И. Пирогова.
Статья размещена в открытом доступе и распространяется на условиях лицензии Creative Commons Attribution (CC BY).

ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ

Влияние туберкулеза на формирование иммунного ответа к SARS-CoV-2

Г. С. Шепелькова, Н. А. Черных, В. К. Косякова, С. С. Садовникова, А. Эргешов, В. В. Еремеев
Информация об авторах

Центральный научно-исследовательский институт туберкулеза, Москва, Россия

Для корреспонденции: Галина Сергеевна Шепелькова
Яузская аллея, д. 2, г. Москва, 107564, Россия; ur.irtc@avoklepehs.g

Информация о статье

Финансирование: НИР FURE-2022-0010.

Вклад авторов: Г. С. Шепелькова — планирование и постановка экспериментов, анализ результатов, написание рукописи; Н. А. Черных — подбор пациентов для включения в исследование, первичный анализ данных; В. К. Косякова — постановка экспериментов, первичный анализ результатов; С. С. Садовникова — подбор пациентов для включения в исследование; А. Эргешов — дизайн исследования; В. В. Еремеев — дизайн исследования, анализ результатов, написание рукописи.

Соблюдение этических стандартов: исследование проведено в рамках темы НИР ФГБНУ «ЦНИИТ» № FURE-2022-0010 и одобрено этическим комитетом ФГБНУ «ЦНИИТ» Протокол 13/1 от 28.12.2021. Все пациенты, вошедшие в исследование, подписали добровольное информированное согласие до момента включения в исследование.

Статья получена: 03.04.2024 Статья принята к печати: 17.05.2024 Опубликовано online: 17.06.2024
|
  1. Kulesza J, Kulesza E, Koziński P, Karpik W, Broncel M, Fol M. BCG and SARS-CoV-2-What Have We Learned? Vaccines (Basel). 2022; 10 (10): 1641. DOI: 10.3390/vaccines10101641.
  2. Shah T, Shah Z, Yasmeen N, Baloch Z, Xia X. Pathogenesis of SARS-CoV-2 and Mycobacterium tuberculosis Coinfection. Front Immunol. 2022; 13: 909011. DOI: 10.3389/fimmu.2022.909011.
  3. Kang TG, Kwon KW, Kim K, Lee I, Kim MJ, Ha SJ, Shin SJ. Viral coinfection promotes tuberculosis immunopathogenesis by type I IFN signaling-dependent impediment of Th1 cell pulmonary influx. Nat Commun. 2022; 13 (1): 3155. DOI: 10.1038/s41467-022-30914-3.
  4. Wells G, Glasgow JN, Nargan K, Lumamba K, Madansein R, Maharaj K, et al. A high-resolution 3D atlas of the spectrum of tuberculous and COVID-19 lung lesions. EMBO Mol Med. 2022; 14 (11): e16283. DOI: 10.15252/emmm.202216283.
  5. Flores-Lovon K, Ortiz-Saavedra B, Cueva-Chicaña LA, Aperrigue-Lira S, Montes-Madariaga ES, Soriano-Moreno DR et al. Immune responses in COVID-19 and tuberculosis coinfection: A scoping review. Front Immunol. 2022; 13: 992743. DOI: 10.3389/fimmu.2022.992743.
  6. Shepelkova GS, Evstifeev VV, Berezovskiy YS, Tarasov RV, Bagirov MA, Yeremeev VV. Lung Inflammation Signature in Post-COVID-19 TB Patients. International Journal of Molecular Sciences. 2023; 24 (22): 16315. Available from: https://doi.org/10.3390/ijms242216315.
  7. Chen Y, Wang Y, Fleming J, Yu Y, Gu Y, Liu C, Fan L, Wang X, Cheng M, Bi L, et al. Active or latent tuberculosis increases susceptibility to COVID-19 and disease severity. medRxiv, 2020. DOI: 10.1101/2020.03.10.20033795.
  8. Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021; 19 (3): 141–54. DOI: 10.1038/s41579-020-00459-7.
  9. Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR, et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell. 2020; 181 (7): 1489–501.e15. DOI: 10.1016/j.cell.2020.05.015.
  10. Krammer F. SARS-CoV-2 vaccines in development. Nature. 2020; 586 (7830): 516–27. DOI: 10.1038/s41586-020-2798-3. 2020.
  11. Stephens DS and McElrath MJ. COVID-19 and the Path to Immunity. JAMA. 2020; 324 (13): 1279–81. DOI: 10.1001/jama.2020.16656.
  12. Piccoli L, Park YJ, Tortorici MA, Czudnochowski N, Walls AC, Beltramello M et al. Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology. Cell. 2020; 183 (4): 1024–42.e21. DOI: 10.1016/j.cell.2020.09.037.
  13. Woodruff MC, Ramonell RP, Nguyen DC, Cashman KS, Saini AS, Haddad NS, et al. Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19. Nat Immunol. 2020; 21 (12): 1506–16. DOI: 10.1038/s41590-020-00814-z.
  14. Juno JA, Tan HX, Lee WS, Reynaldi A, Kelly HG, Wragg K, et al. Humoral and circulating follicular helper T cell responses in recovered patients with COVID-19. Nat Med. 2020; 26 (9): 1428– 34. DOI: 10.1038/s41591-020-0995-0.
  15. Meckiff BJ, Ramírez-Suástegui C, Fajardo V, Chee SJ, Kusnadi A, Simon H, et al. Imbalance of Regulatory and Cytotoxic SARSCoV-2-Reactive CD4+ T Cells in COVID-19. Cell. 2020; 183 (5): 1340–1353.e16. DOI: 10.1016/j.cell.2020.10.001.
  16. Rydyznski Moderbacher C, Ramirez SI, Dan JM, Grifoni A, Hastie KM, Weiskopf D, et al. Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease Severity. Cell. 2020; 183 (4): 996–1012.e19. DOI: 10.1016/j.cell.2020.09.038.
  17. Oja AE, Saris A, Ghandour CA, Kragten NAM, Hogema BM, Nossent EJ, et al. Divergent SARS-CoV-2-specific T- and B-cell responses in severe but not mild COVID-19 patients. Eur J Immunol. 2020; 50 (12): 1998–2012. DOI: 10.1002/eji.202048908.
  18. Peng Y, Mentzer AJ, Liu G, Yao X, Yin Z, Dong D, et al. Broad and strong memory CD4+ and CD8+ T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nat Immunol. 2020; 21 (11): 1336–45. DOI: 10.1038/s41590-020-0782-6.
  19. Gudbjartsson DF, Norddahl GL, Melsted P, Gunnarsdottir K, Holm H, Eythorsson E et al. Humoral Immune Response to SARSCoV-2 in Iceland. N Engl J Med. 2020; 383 (18): 1724–34. DOI: 10.1056/NEJMoa2026116.
  20. Lipsitch M, Kahn R, Mina MJ. Antibody testing will enhance the power and accuracy of COVID-19-prevention trials. Nat Med. 2020; 26 (6): 818–9. DOI: 10.1038/s41591-020-0887-3.
  21. Nelde A, Bilich T, Heitmann JS, Maringer Y, Salih HR, Roerden M et al. SARS-CoV-2-derived peptides define heterologous and COVID-19-induced T cell recognition. Nat Immunol. 2021; 22 (1): 74–85. DOI: 10.1038/s41590-020-00808-x.
  22. Siddiqi SH, Rusch-Gerdes S. MGIT Procedure Manual for BACTEC MGIT 960 ТВ System. 2006; 89 p.
  23. Wajnberg A, Amanat F, Firpo A, Altman DR, Bailey MJ, Mansour M, et al. Robust neutralizing antibodies to SARS-CoV-2 infection persist for months. Science. 2020; 370 (6521): 1227–30. DOI: 10.1126/science.abd7728.
  24. Rodda LB, Netland J, Shehata L, Pruner KB, Morawski PA, Thouvenel CD, et al. Functional SARS-CoV-2-Specific Immune Memory Persists after Mild COVID-19. Cell. 2021; 184(1): 169–83. e17. DOI: 10.1016/j.cell.2020.11.029.
  25. Rajamanickam A, Kumar NP, Padmapriyadarsini C, Nancy A, Selvaraj N, Karunanithi K, et al. Latent tuberculosis co-infection is associated with heightened levels of humoral, cytokine and acute phase responses in seropositive SARS-CoV-2 infection. J Infect. 2021; 83 (3): 339–46. DOI: 10.1016/j.jinf.2021.07.029.
  26. Petrone L, Petruccioli E, Vanini V, Cuzzi G, Gualano G, Vittozzi P, et al. Coinfection of tuberculosis and COVID-19 limits the ability to in vitro respond to SARS-CoV-2. Int J Infect Dis. 2021; 113 Suppl 1: S82–S7. DOI: 10.1016/j.ijid.2021.02.090.
  27. Riou C, du Bruyn E, Stek C, Daroowala R, Goliath RT, Abrahams F, et al. Relationship of SARS-CoV-2-specific CD4 response to COVID-19 severity and impact of HIV-1 and tuberculosis coinfection. J Clin Invest. 2021; 131 (12): e149125. DOI: 10.1172/JCI149125.
  28. Najafi-Fard S, Aiello A, Navarra A, Cuzzi G, Vanini V, Migliori GB, et al. Characterization of the immune impairment of patients with tuberculosis and COVID-19 coinfection. Int J Infect Dis. 2023; 130 (Suppl 1): S34–S42. DOI: 10.1016/j.ijid.2023.03.021.
  29. Batiha GES, Al-kuraishy HM, Al-Gareeb AI, Welson NN. Pathophysiology of Post-COVID syndromes: a new perspective. Virol J. 2022; 19: 158. Available from: https://doi.org/10.1186/s12985-022-01891-2.