
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (CC BY).
ORIGINAL RESEARCH
The impact of tuberculosis on the development of immune response to SARS-CoV-2
Central Tuberculosis Research Institute, Moscow, Russia
Correspondence should be addressed: Galina S. Shepelkova
Yauza alley, 2, Moscow, 107564, Russia; ur.irtc@avoklepehs.g
Funding: research project FURE-2022-0010.
Author contribution: Shepelkova GS — planning the experiments and experimental procedure, analysis of the results, manuscript writing; Chernyh NA — selection of patients for inclusion in the study, primary data analysis; Kosiakova VK — experimental procedure, primary data analysis; Sadovnikova SS — selection of patients for inclusion in the study; Ergeshov A — study design; Yeremeev VV — study design, analysis of the results, manuscript writing.
Compliance with ethical standards: the study was conducted as part of the research project FURE-2022-0010 of the Central Tuberculosis Research Institute and approved by the Ethics Committee of the Central Tuberculosis Research Institute (protocol No. 13/1 dated 28 December 2021). All the patients included in the study submitted the informed consent before enrollment.
- Kulesza J, Kulesza E, Koziński P, Karpik W, Broncel M, Fol M. BCG and SARS-CoV-2-What Have We Learned? Vaccines (Basel). 2022; 10 (10): 1641. DOI: 10.3390/vaccines10101641.
- Shah T, Shah Z, Yasmeen N, Baloch Z, Xia X. Pathogenesis of SARS-CoV-2 and Mycobacterium tuberculosis Coinfection. Front Immunol. 2022; 13: 909011. DOI: 10.3389/fimmu.2022.909011.
- Kang TG, Kwon KW, Kim K, Lee I, Kim MJ, Ha SJ, Shin SJ. Viral coinfection promotes tuberculosis immunopathogenesis by type I IFN signaling-dependent impediment of Th1 cell pulmonary influx. Nat Commun. 2022; 13 (1): 3155. DOI: 10.1038/s41467-022-30914-3.
- Wells G, Glasgow JN, Nargan K, Lumamba K, Madansein R, Maharaj K, et al. A high-resolution 3D atlas of the spectrum of tuberculous and COVID-19 lung lesions. EMBO Mol Med. 2022; 14 (11): e16283. DOI: 10.15252/emmm.202216283.
- Flores-Lovon K, Ortiz-Saavedra B, Cueva-Chicaña LA, Aperrigue-Lira S, Montes-Madariaga ES, Soriano-Moreno DR et al. Immune responses in COVID-19 and tuberculosis coinfection: A scoping review. Front Immunol. 2022; 13: 992743. DOI: 10.3389/fimmu.2022.992743.
- Shepelkova GS, Evstifeev VV, Berezovskiy YS, Tarasov RV, Bagirov MA, Yeremeev VV. Lung Inflammation Signature in Post-COVID-19 TB Patients. International Journal of Molecular Sciences. 2023; 24 (22): 16315. Available from: https://doi.org/10.3390/ijms242216315.
- Chen Y, Wang Y, Fleming J, Yu Y, Gu Y, Liu C, Fan L, Wang X, Cheng M, Bi L, et al. Active or latent tuberculosis increases susceptibility to COVID-19 and disease severity. medRxiv, 2020. DOI: 10.1101/2020.03.10.20033795.
- Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021; 19 (3): 141–54. DOI: 10.1038/s41579-020-00459-7.
- Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR, et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell. 2020; 181 (7): 1489–501.e15. DOI: 10.1016/j.cell.2020.05.015.
- Krammer F. SARS-CoV-2 vaccines in development. Nature. 2020; 586 (7830): 516–27. DOI: 10.1038/s41586-020-2798-3. 2020.
- Stephens DS and McElrath MJ. COVID-19 and the Path to Immunity. JAMA. 2020; 324 (13): 1279–81. DOI: 10.1001/jama.2020.16656.
- Piccoli L, Park YJ, Tortorici MA, Czudnochowski N, Walls AC, Beltramello M et al. Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology. Cell. 2020; 183 (4): 1024–42.e21. DOI: 10.1016/j.cell.2020.09.037.
- Woodruff MC, Ramonell RP, Nguyen DC, Cashman KS, Saini AS, Haddad NS, et al. Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19. Nat Immunol. 2020; 21 (12): 1506–16. DOI: 10.1038/s41590-020-00814-z.
- Juno JA, Tan HX, Lee WS, Reynaldi A, Kelly HG, Wragg K, et al. Humoral and circulating follicular helper T cell responses in recovered patients with COVID-19. Nat Med. 2020; 26 (9): 1428– 34. DOI: 10.1038/s41591-020-0995-0.
- Meckiff BJ, Ramírez-Suástegui C, Fajardo V, Chee SJ, Kusnadi A, Simon H, et al. Imbalance of Regulatory and Cytotoxic SARSCoV-2-Reactive CD4+ T Cells in COVID-19. Cell. 2020; 183 (5): 1340–1353.e16. DOI: 10.1016/j.cell.2020.10.001.
- Rydyznski Moderbacher C, Ramirez SI, Dan JM, Grifoni A, Hastie KM, Weiskopf D, et al. Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease Severity. Cell. 2020; 183 (4): 996–1012.e19. DOI: 10.1016/j.cell.2020.09.038.
- Oja AE, Saris A, Ghandour CA, Kragten NAM, Hogema BM, Nossent EJ, et al. Divergent SARS-CoV-2-specific T- and B-cell responses in severe but not mild COVID-19 patients. Eur J Immunol. 2020; 50 (12): 1998–2012. DOI: 10.1002/eji.202048908.
- Peng Y, Mentzer AJ, Liu G, Yao X, Yin Z, Dong D, et al. Broad and strong memory CD4+ and CD8+ T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nat Immunol. 2020; 21 (11): 1336–45. DOI: 10.1038/s41590-020-0782-6.
- Gudbjartsson DF, Norddahl GL, Melsted P, Gunnarsdottir K, Holm H, Eythorsson E et al. Humoral Immune Response to SARSCoV-2 in Iceland. N Engl J Med. 2020; 383 (18): 1724–34. DOI: 10.1056/NEJMoa2026116.
- Lipsitch M, Kahn R, Mina MJ. Antibody testing will enhance the power and accuracy of COVID-19-prevention trials. Nat Med. 2020; 26 (6): 818–9. DOI: 10.1038/s41591-020-0887-3.
- Nelde A, Bilich T, Heitmann JS, Maringer Y, Salih HR, Roerden M et al. SARS-CoV-2-derived peptides define heterologous and COVID-19-induced T cell recognition. Nat Immunol. 2021; 22 (1): 74–85. DOI: 10.1038/s41590-020-00808-x.
- Siddiqi SH, Rusch-Gerdes S. MGIT Procedure Manual for BACTEC MGIT 960 ТВ System. 2006; 89 p.
- Wajnberg A, Amanat F, Firpo A, Altman DR, Bailey MJ, Mansour M, et al. Robust neutralizing antibodies to SARS-CoV-2 infection persist for months. Science. 2020; 370 (6521): 1227–30. DOI: 10.1126/science.abd7728.
- Rodda LB, Netland J, Shehata L, Pruner KB, Morawski PA, Thouvenel CD, et al. Functional SARS-CoV-2-Specific Immune Memory Persists after Mild COVID-19. Cell. 2021; 184(1): 169–83. e17. DOI: 10.1016/j.cell.2020.11.029.
- Rajamanickam A, Kumar NP, Padmapriyadarsini C, Nancy A, Selvaraj N, Karunanithi K, et al. Latent tuberculosis co-infection is associated with heightened levels of humoral, cytokine and acute phase responses in seropositive SARS-CoV-2 infection. J Infect. 2021; 83 (3): 339–46. DOI: 10.1016/j.jinf.2021.07.029.
- Petrone L, Petruccioli E, Vanini V, Cuzzi G, Gualano G, Vittozzi P, et al. Coinfection of tuberculosis and COVID-19 limits the ability to in vitro respond to SARS-CoV-2. Int J Infect Dis. 2021; 113 Suppl 1: S82–S7. DOI: 10.1016/j.ijid.2021.02.090.
- Riou C, du Bruyn E, Stek C, Daroowala R, Goliath RT, Abrahams F, et al. Relationship of SARS-CoV-2-specific CD4 response to COVID-19 severity and impact of HIV-1 and tuberculosis coinfection. J Clin Invest. 2021; 131 (12): e149125. DOI: 10.1172/JCI149125.
- Najafi-Fard S, Aiello A, Navarra A, Cuzzi G, Vanini V, Migliori GB, et al. Characterization of the immune impairment of patients with tuberculosis and COVID-19 coinfection. Int J Infect Dis. 2023; 130 (Suppl 1): S34–S42. DOI: 10.1016/j.ijid.2023.03.021.
- Batiha GES, Al-kuraishy HM, Al-Gareeb AI, Welson NN. Pathophysiology of Post-COVID syndromes: a new perspective. Virol J. 2022; 19: 158. Available from: https://doi.org/10.1186/s12985-022-01891-2.