This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (CC BY).
ORIGINAL RESEARCH
Complex antibacterial action of enzymes acting on Staphylococcus aureus biofilms
1 Sirius University of Science and Technology, Sirius, Sochi, Russia
2 Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Russia
Correspondence should be addressed: Maxim O. Nagornykh
Prospekt Nauki, 5, Pushchino, 142290, Russia; moc.liamg@rennabred
Funding: the study was supported by the program of the Ministry of Science and Higher Education of the Russian Federation (agreement No. 075-10-2021-113, unique project ID: RF----193021X0001).
Author contribution: Zagoskin AA, Mirzoyan RA — creating genetic constructs, сhromatographic purification of recombinant proteins; Rezvykh LF — creating genetic constructs; Zakharova MV, Mubarakshina EK — selection of condition for recombinant protein production, experiments on production involving various E. coli strains; Nagornykh MO — study concept, genetic construct design, manuscript writing; Ivanov RA — general management.
- Naghavi Mohsen, et al. Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050. The Lancet. 2024; 404 (10459), 1199–226.
- Liu H, Hu Z, Li M, et al. Therapeutic potential of bacteriophage endolysins for infections caused by Gram-positive bacteria. J Biomed Sci. 2023; 30, 29. DOI:10.1186/s12929-023-00919-1.
- Haddad Kashani H, Schmelcher M, Sabzalipoor H, Seyed Hosseini E, Moniri R. Recombinant Endolysins as Potential Therapeutics against Antibiotic-Resistant Staphylococcus aureus: Current Status of Research and Novel Delivery Strategies. Clin Microbiol Rev. 2018; 31: Available from: 10.1128/cmr.00071-17.https://doi.org/10.1128/cmr.00071-17
- Wang Y, Wang X, Liu X, Lin B. Research Progress on Strategies for Improving the Enzyme Properties of Bacteriophage Endolysins. J Microbiol Biotechnol. 2024; 34: 1189–96. Available from: https://doi.org/10.4014/jmb.2312.12050.
- Abdelrahman F, Easwaran M, Daramola OI, Ragab S, Lynch S, Oduselu TJ, et al. Phage-Encoded Endolysins. Antibiotics (Basel). 2021; 10 (2): 124. DOI: 10.3390/antibiotics10020124. PMID: 33525684; PMCID: PMC7912344.
- Sauer K, Stoodley P, Goeres DM, et al. The biofilm life cycle: expanding the conceptual model of biofilm formation. Nat Rev Microbiol. 2022; 20: 608–620. Available from: https://doi.org/10.1038/s41579-022-00767-0.
- Wang S, Zhao Y, Breslawec AP, et al. Strategy to combat biofilms: a focus on biofilm dispersal enzymes. npj Biofilms Microbiomes. 2023; 9: 63 Available from: https://doi.org/10.1038/s41522-023-00427-y.
- Kaplan JB, LoVetri K, Cardona ST, Madhyastha S, Sadovskaya I, Jabbouri S, et al. Recombinant human DNase I decreases biofilm and increases antimicrobial susceptibility in staphylococci. J Antibiot (Tokyo). 2012; 65 (2): 73–7. DOI: 10.1038/ja.2011.113. Epub 2011 Dec 14. PMID: 22167157; PMCID: PMC3288126.
- Bartlett HP, Dawson CC, Glickman CM, Osborn DW, Evans CR, Garcia BJ, et al. Targeting intracellular nontuberculous mycobacteria and M. tuberculosis with a bactericidal enzymatic cocktail. Microbiol Spectr. 2024; 12 (5): e0353423. DOI: 10.1128/spectrum.03534-23. Epub 2024 Mar 27. PMID: 38534149; PMCID: PMC11064574.
- Howden BP, Giulieri SG, Wong Fok Lung T, et al. Staphylococcus aureus host interactions and adaptation. Nat Rev Microbiol. 2023; 21: 380–395. Available from: https://doi.org/10.1038/s41579-023-00852-y.
- Zakharova MV, Mubarakshina EK, Nagornykh MO. Construction of Expression Vectors for Efficient Production of Recombinant Proteins in E. coli for the Development of Therapeutic Drugs. Biochem. Moscow Suppl. Ser. B. 2024; 18: 254–62. Available from: https://doi.org/10.1134/S1990750823600516.
- Costa S, Almeida A, Castro A, Domingues L. Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: the novel Fh8 system. Front Microbiol. 2014; 5: 63. DOI: 10.3389/fmicb.2014.00063. PMID: 24600443; PMCID: PMC3928792.
- Zakharova MV, Zagoskin AA, Ivanov RA, Nagornykh MO. Preparation of a recombinant ribonuclease inhibitor in E. coli for use in mRNA synthesis in vitro. Bulletin of RSMU. 2023; (6): 34–41. DOI: 10.24075/brsmu.2023.058.
- Murray E, Draper LA, Ross RP, Hill C. The Advantages and Challenges of Using Endolysins in a Clinical Setting. Viruses. 2021; 13 (4): 680. DOI: 10.3390/v13040680. PMID: 33920965; PMCID: PMC8071259.
- O'Flaherty S, Coffey A, Meaney W, Fitzgerald GF, Ross RP. The recombinant phage lysin LysK has a broad spectrum of lytic activity against clinically relevant staphylococci, including methicillin-resistant Staphylococcus aureus. J Bacteriol. 2005; 187 (20): 7161–4. DOI: 10.1128/JB.187.20.7161-7164.2005. PMID: 16199588; PMCID: PMC1251611.
- Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010; 8: 623–33. Available from: https://doi.org/10.1038/nrmicro2415.
- Karygianni L, Ren Z, Koo H, Thurnheer T. Biofilm Matrixome: Extracellular Components in Structured Microbial Communities. Trends Microbiol. 2020; 28 (8): 668–81. DOI: 10.1016/j.tim.2020.03.016. Epub 2020 Apr 21. PMID: 32663461.
- Gustafson AM, Larrain CM, Friedman LR, Repkorwich R, Anidi IU, Forrest KM, et al. Novel management of pseudomonas biofilm-like structure in a post-pneumonectomy empyema. Front Cell Infect Microbiol. 2024; 14: 1458652. DOI: 10.3389/fcimb.2024.1458652. PMID: 39483118; PMCID: PMC11525003.
- Quan Lin, Maokun Sheng, Yanjun Tian, Bing Li, Zhaodi Kang, Yingying Yang, et al. Antibiofilm activity and synergistic effects of DNase I and lysostaphin against Staphylococcus aureus biofilms. Food Quality and Safety. 2024; 8: fyae024. Available from: https://doi.org/10.1093/fqsafe/fyae024.